Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PTEN functions as a melanoma tumor suppressor by promoting host immune response

Abstract

Cancer cells acquire several traits that allow for their survival and progression, including the ability to evade the host immune response. However, the mechanisms by which cancer cells evade host immune responses remain largely elusive. Here we study the phenomena of immune evasion in malignant melanoma cells. We find that the tumor suppressor phosphatase and tensin homolog (PTEN) is an important regulator of the host immune response against melanoma cells. Mechanistically, PTEN represses the expression of immunosuppressive cytokines by blocking the phosphatidylinositide 3-kinase (PI3K) pathway. In melanoma cells lacking PTEN, signal transducer and activator of transcription 3 activates the transcription of immunosuppressive cytokines in a PI3K-dependent manner. Furthermore, conditioned media from PTEN-deficient, patient-derived short-term melanoma cultures and established melanoma cell lines blocked the production of the interleukin-12 (IL-12) in human monocyte-derived dendritic cells. Inhibition of IL-12 production was rescued by restoring PTEN or using neutralizing antibodies against the immunosuppressive cytokines. Furthermore, we report that PTEN, as an alternative mechanism to promote the host immune response against cancer cells, represses the expression of programmed cell death 1 ligand, a known repressor of the host immune response. Finally, to establish the clinical significance of our results, we analyzed malignant melanoma patient samples with or without brisk host responses. These analyses confirmed that PTEN loss is associated with a higher percentage of malignant melanoma samples with non-brisk host responses compared with samples with brisk host responses. Collectively, these results establish that PTEN functions as a melanoma tumor suppressor in part by regulating the host immune response against melanoma cells and highlight the importance of assessing PTEN status before recruiting melanoma patients for immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.

    Article  CAS  Google Scholar 

  2. Wu H, Goel V, Haluska FG . PTEN signaling pathways in melanoma. Oncogene 2003; 22: 3113–3122.

    Article  CAS  Google Scholar 

  3. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 2009; 41: 544–552.

    Article  CAS  Google Scholar 

  4. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 2009; 15: 294–303.

    Article  CAS  Google Scholar 

  5. Nogueira C, Kim KH, Sung H, Paraiso KH, Dannenberg JH, Bosenberg M et al. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis. Oncogene 2010; 29: 6222–6232.

    Article  CAS  Google Scholar 

  6. Lowe SW, Cepero E, Evan G . Intrinsic tumour suppression. Nature 2004; 432: 307–315.

    Article  CAS  Google Scholar 

  7. Burikhanov R, Zhao Y, Goswami A, Qiu S, Schwarze SR, Rangnekar VM . The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 2009; 138: 377–388.

    Article  CAS  Google Scholar 

  8. Zitvogel L, Tesniere A, Kroemer G . Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 2006; 6: 715–727.

    Article  CAS  Google Scholar 

  9. Cozar JM, Aptsiauri N, Tallada M, Garrido F, Ruiz-Cabello F . Late pulmonary metastases of renal cell carcinoma immediately after post-transplantation immunosuppressive treatment: a case report. J Med Case Rep 2008; 2: 111.

    Article  Google Scholar 

  10. Lengagne R, Graff-Dubois S, Garcette M, Renia L, Kato M, Guillet JG et al. Distinct role for CD8 T cells toward cutaneous tumors and visceral metastases. J Immunol 2008; 180: 130–137.

    Article  CAS  Google Scholar 

  11. O'Shea JJ, Ma A, Lipsky P . Cytokines and autoimmunity. Nat Rev Immunol 2002; 2: 37–45.

    Article  CAS  Google Scholar 

  12. Alcocer-Gonzalez JM, Berumen J, Tamez-Guerra R, Bermudez-Morales V, Peralta-Zaragoza O, Hernandez-Pando R et al. In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells. Viral Immunol 2006, Summer 19: 481–491.

    Article  CAS  Google Scholar 

  13. Rabinovich GA, Gabrilovich D, Sotomayor EM . Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007; 25: 267–296.

    Article  CAS  Google Scholar 

  14. Salmena L, Carracedo A, Pandolfi PP . Tenets of PTEN tumor suppression. Cell 2008; 133: 403–414.

    Article  CAS  Google Scholar 

  15. Li N, Grivennikov SI, Karin M . The unholy trinity: inflammation, cytokines, and STAT3 shape the cancer microenvironment. Cancer Cell. 2011; 19: 429–431.

    Article  CAS  Google Scholar 

  16. Caamano J, Hunter CA . NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clin Microbiol Rev 2002; 15: 414–429.

    Article  CAS  Google Scholar 

  17. Khalaf H, Jass J, Olsson PE . Differential cytokine regulation by NF-kappaB and AP-1 in Jurkat T-cells. BMC Immunol 2010; 11: 26.

    Article  Google Scholar 

  18. Hart JR, Liao L, Yates JR 3rd, Vogt PK . Essential role of Stat3 in PI3K-induced oncogenic transformation. Proc Natl Acad Sci USA 2011; 108: 13247–13252.

    Article  CAS  Google Scholar 

  19. Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP, Baldwin AS . Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. Genes Dev 2008; 22: 1490–1500.

    Article  CAS  Google Scholar 

  20. Loots GG, Ovcharenko I . rVISTA 2.0: evolutionary analysis of transcription factor binding sites. Nucleic Acids Res 2004; 32 (Web Server issue): W217–W221.

    Article  CAS  Google Scholar 

  21. Cimica V, Chen HC, Iyer JK, Reich NC . Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-beta1. PLoS One 2011; 6: e20188.

    Article  CAS  Google Scholar 

  22. Liu L, McBride KM, Reich NC . STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3. Proc Natl Acad Sci USA 2005; 102: 8150–8155.

    Article  CAS  Google Scholar 

  23. Lund TC, Coleman C, Horvath E, Sefton BM, Jove R, Medveczky MM et al. The Src-family kinase Lck can induce STAT3 phosphorylation and DNA binding activity. Cell Signal 1999; 11: 789–796.

    Article  CAS  Google Scholar 

  24. Blank C, Mackensen A . Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 2007; 56: 739–745.

    Article  Google Scholar 

  25. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 2007; 13: 84–88.

    Article  CAS  Google Scholar 

  26. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y . The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 2006; 203: 1651–1656.

    Article  CAS  Google Scholar 

  27. Donia M, Fagone P, Nicoletti F, Andersen RS, Hogdall E, Straten PT et al. BRAF inhibition improves tumor recognition by the immune system: potential implications for combinatorial therapies against melanoma involving adoptive T-cell transfer. Oncoimmunology 2012; 1: 1476–1483.

    Article  Google Scholar 

  28. Knight DA, Ngiow SF, Li M, Parmenter T, Mok S, Cass A et al. Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J Clin Invest 2013; 123: 1371–1381.

    Article  CAS  Google Scholar 

  29. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  Google Scholar 

  30. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al. High frequency of BRAF mutations in nevi. Nat Genet 2003; 33: 19–20.

    Article  CAS  Google Scholar 

  31. Rosso R, Romagosa Y, Kirsner RS . Progression of NRAS and BRAF mutations in cutaneous melanoma. J Invest Dermatol 2009; 129: 1318.

    Article  CAS  Google Scholar 

  32. Greene VR, Johnson MM, Grimm EA, Ellerhorst JA . Frequencies of NRAS and BRAF mutations increase from the radial to the vertical growth phase in cutaneous melanoma. J Invest Dermatol 2009; 129: 1483–1488.

    Article  CAS  Google Scholar 

  33. Witten IH, Frank E, Hall MA . Data Mining: Practical Machine Learning Tools and Techniques 3rd edn Morgan Kaufmann, Burlington, MA, 2011, xxxiii, 629 p. p.

    Google Scholar 

  34. Zitvogel L, Tesniere A, Kroemer G . Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 2006; 6: 715–727.

    Article  CAS  Google Scholar 

  35. Tsao H, Mihm MC Jr., Sheehan C . PTEN expression in normal skin, acquired melanocytic nevi, and cutaneous melanoma. J Am Acad Dermatol 2003; 49: 865–872.

    Article  Google Scholar 

  36. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR . Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 2008; 132: 363–374.

    Article  CAS  Google Scholar 

  37. Santra MK, Wajapeyee N, Green MR . F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature 2009; 459: 722–725.

    Article  CAS  Google Scholar 

  38. Brandl C, Ortler S, Herrmann T, Cardell S, Lutz MB, Wiendl H . B7-H1-deficiency enhances the potential of tolerogenic dendritic cells by activating CD1d-restricted type II NKT cells. PLoS One 2010; 5: e10800.

    Article  Google Scholar 

  39. Dadzie OE, Yang S, Emley A, Keady M, Bhawan J, Mahalingam M . RAS and RAF mutations in banal melanocytic aggregates contiguous with primary cutaneous melanoma: clues to melanomagenesis. Br J Dermatol 2009; 160: 368–375.

    Article  CAS  Google Scholar 

  40. Mihm MC Jr., Clemente CG, Cascinelli N . Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response. Lab Invest 1996; 74: 43–47.

    PubMed  Google Scholar 

  41. Nguyen LT, Yen PH, Nie J, Liadis N, Ghazarian D, Al-Habeeb A et al. Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS One 2010; 5: e13940.

    Article  Google Scholar 

Download references

Acknowledgements

NW is a Sidney Kimmel Scholar for translational Cancer research and is supported by a team science award from Melanoma Research Alliance and a Career Development Award from Melanoma Research Foundation. NW and YK are members of the Yale Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Mahalingam or N Wajapeyee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y., Richards, JA., Gupta, R. et al. PTEN functions as a melanoma tumor suppressor by promoting host immune response. Oncogene 33, 4632–4642 (2014). https://doi.org/10.1038/onc.2013.409

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.409

Keywords

This article is cited by

Search

Quick links