Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An EGFR wild type–EGFRvIII–HB-EGF feed-forward loop regulates the activation of EGFRvIII

Abstract

EGFRvIII is a key oncogene in glioblastoma (GBM). EGFRvIII results from an in-frame deletion in the extracellular domain of EGFR, does not bind ligand and is thought to be constitutively active. Although EGFRvIII dimerization is known to activate EGFRvIII, the factors that drive EGFRvIII dimerization and activation are not well understood. Here we present a new model of EGFRvIII activation and propose that oncogenic activation of EGFRvIII in glioma cells is driven by co-expressed activated EGFR wild type (EGFRwt). Increasing EGFRwt leads to a striking increase in EGFRvIII tyrosine phosphorylation and activation while silencing EGFRwt inhibits EGFRvIII activation. Both the dimerization arm and the kinase activity of EGFRwt are required for EGFRvIII activation. EGFRwt activates EGFRvIII by facilitating EGFRvIII dimerization. We have previously identified HB-EGF, a ligand for EGFRwt, as a gene induced specifically by EGFRvIII. In this study, we show that HB-EGF is induced by EGFRvIII only when EGFRwt is present. Remarkably, altering HB-EGF recapitulates the effect of EGFRwt on EGFRvIII activation. Thus, increasing HB-EGF leads to a striking increase in EGFRvIII tyrosine phosphorylation while silencing HB-EGF attenuates EGFRvIII phosphorylation, suggesting that an EGFRvIII–HB-EGF–EGFRwt feed-forward loop regulates EGFRvIII activation. Silencing EGFRwt or HB-EGF leads to a striking inhibition of EGFRvIII-induced tumorigenicity, while increasing EGFRwt or HB-EGF levels resulted in accelerated EGFRvIII-mediated oncogenicity in an orthotopic mouse model. Furthermore, we demonstrate the existence of this loop in human GBM. Thus, our data demonstrate that oncogenic activation of EGFRvIII in GBM is likely maintained by a continuous EGFRwt–EGFRvIII–HB-EGF loop, potentially an attractive target for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Reardon DA, Wen PY . Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. Oncologist 2006; 11: 152–164.

    Article  CAS  PubMed  Google Scholar 

  2. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feng H, Hu B, Liu KW, Li Y, Lu X, Cheng T et al. Activation of Rac1 by Src-dependent phosphorylation of Dock180(Y1811) mediates PDGFRalpha-stimulated glioma tumorigenesis in mice and humans. J Clin Invest 2011; 121: 4670–4684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 1985; 313: 144–147.

    Article  CAS  PubMed  Google Scholar 

  5. Huang PH, Xu AM, White FM . Oncogenic EGFR signaling networks in glioma. Sci Signal 2009; 2: re6.

    PubMed  Google Scholar 

  6. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353: 2012–2024.

    Article  CAS  PubMed  Google Scholar 

  7. Barkovich KJ, Hariono S, Garske AL, Zhang J, Blair JA, Fan QW et al. Kinetics of inhibitor cycling underlie therapeutic disparities between EGFR-driven lung and brain cancers. Cancer Discov 2012; 2: 450–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vivanco I, Robins HI, Rohle D, Campos C, Grommes C, Nghiemphu PL et al. Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov 2012; 2: 458–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 1994; 91: 7727–7731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagane M, Coufal F, Lin H, Bogler O, Cavenee WK, Huang HJ . A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 1996; 56: 5079–5086.

    CAS  PubMed  Google Scholar 

  11. Holland EC, Hively WP, DePinho RA, Varmus HE . A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 1998; 12: 3675–3685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu H, Acquaviva J, Ramachandran P, Boskovitz A, Woolfenden S, Pfannl R et al. Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci USA 2009; 106: 2712–2716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I . Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 2010; 464: 783–787.

    Article  CAS  PubMed  Google Scholar 

  14. Moscatello DK, Montgomery RB, Sundareshan P, McDanel H, Wong MY, Wong AJ . Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 1996; 13: 85–96.

    CAS  PubMed  Google Scholar 

  15. Huang HS, Nagane M, Klingbeil CK, Lin H, Nishikawa R, Ji XD et al. The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem 1997; 272: 2927–2935.

    Article  CAS  PubMed  Google Scholar 

  16. Luwor RB, Zhu HJ, Walker F, Vitali AA, Perera RM, Burgess AW et al. The tumor-specific de2-7 epidermal growth factor receptor (EGFR) promotes cells survival and heterodimerizes with the wild-type EGFR. Oncogene 2004; 23: 6095–6104.

    Article  CAS  PubMed  Google Scholar 

  17. Hwang Y, Chumbalkar V, Latha K, Bogler O . Forced dimerization increases the activity of DeltaEGFR/EGFRvIII and enhances its oncogenicity. Mol Cancer Res 2011; 9: 1199–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramnarain DB, Park S, Lee DY, Hatanpaa KJ, Scoggin SO, Otu H et al. Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res 2006; 66: 867–874.

    Article  CAS  PubMed  Google Scholar 

  19. Inda MD, Bonavia R, Mukasa A, Narita Y, Sah DW, Vandenberg S et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 2010; 24: 1731–1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dowlati A, Nethery D, Kern JA . Combined inhibition of epidermal growth factor receptor and JAK/STAT pathways results in greater growth inhibition in vitro than single agent therapy. Mol Cancer Ther 2004; 3: 459–463.

    CAS  PubMed  Google Scholar 

  21. Thomas CY, Chouinard M, Cox M, Parsons S, Stallings-Mann M, Garcia R et al. Spontaneous activation and signaling by overexpressed epidermal growth factor receptors in glioblastoma cells. Int J Cancer 2003; 104: 19–27.

    Article  CAS  PubMed  Google Scholar 

  22. Schlessinger J . Cell signaling by receptor tyrosine kinases. Cell 2000; 103: 211–225.

    Article  CAS  PubMed  Google Scholar 

  23. Ferguson KM . Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys 2008; 37: 353–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Q, Villeneuve G, Wang Z . Control of epidermal growth factor receptor endocytosis by receptor dimerization, rather than receptor kinase activation. EMBO Rep 2005; 6: 942–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 2002; 110: 763–773.

    Article  CAS  PubMed  Google Scholar 

  26. Magnus N, Garnier D, Rak J . Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood 2010; 116: 815–818.

    Article  CAS  PubMed  Google Scholar 

  27. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 2007; 318: 287–290.

    Article  CAS  PubMed  Google Scholar 

  28. Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA 2007; 104: 12867–12872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pillay V, Allaf L, Wilding AL, Donoghue JF, Court NW, Greenall SA et al. The plasticity of oncogene addiction: implications for targeted therapies directed to receptor tyrosine kinases. Neoplasia 2009; 11: 448–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Acquaviva J, Jun HJ, Lessard J, Ruiz R, Zhu H, Donovan M et al. Chronic activation of wild-type epidermal growth factor receptor and loss of Cdkn2a cause mouse glioblastoma formation. Cancer Res 2011; 71: 7198–7206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johns TG, Perera RM, Vernes SC, Vitali AA, Cao DX, Cavenee WK et al. The efficacy of epidermal growth factor receptor-specific antibodies against glioma xenografts is influenced by receptor levels, activation status, and heterodimerization. Clin Cancer Res 2007; 13: 1911–1925.

    Article  CAS  PubMed  Google Scholar 

  32. Mishima K, Higashiyama S, Asai A, Yamaoka K, Nagashima Y, Taniguchi N et al. Heparin-binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas. Acta Neuropathol (Berl) 1998; 96: 322–328.

    Article  CAS  Google Scholar 

  33. Samuels V, Barrett JM, Bockman S, Pantazis CG, Allen MB Jr. . Immunocytochemical study of transforming growth factor expression in benign and malignant gliomas. Am J Pathol 1989; 134: 894–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Biernat W, Huang H, Yokoo H, Kleihues P, Ohgaki H . Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas. Brain Pathol 2004; 14: 131–136.

    Article  CAS  PubMed  Google Scholar 

  35. Hatanpaa KJ, Burma S, Zhao D, Habib AA . Epidermal growth factor receptor (EGFR) in glioma: Signal transduction, neuropathology, imaging and radioresistance. Neoplasia 2010; 12: 675–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nishikawa R, Sugiyama T, Narita Y, Furnari F, Cavenee WK, Matsutani M . Immunohistochemical analysis of the mutant epidermal growth factor, deltaEGFR, in glioblastoma. Brain Tumor Pathol 2004; 21: 53–56.

    Article  CAS  PubMed  Google Scholar 

  37. Del Vecchio CA, Giacomini CP, Vogel H, Jensen KC, Florio T, Merlo A et al. EGFRvIII gene rearrangement is an early event in glioblastoma tumorigenesis and expression defines a hierarchy modulated by epigenetic mechanisms. Oncogene 2012; 32: 2670–2681.

    Article  PubMed  Google Scholar 

  38. Ramnarain DB, Paulmurugan R, Park S, Mickey BE, Asaithamby A, Saha D et al. RIP1 links inflammatory and growth factor signaling pathways by regulating expression of the EGFR. Cell Death Differ 2008; 15: 344–353.

    Article  CAS  PubMed  Google Scholar 

  39. Batra SK, Castelino-Prabhu S, Wikstrand CJ, Zhu X, Humphrey PA, Friedman HS et al. Epidermal growth factor ligand-independent, unregulated, cell-transforming potential of a naturally occurring human mutant EGFRvIII gene. Cell Growth Differ 1995; 6: 1251–1259.

    CAS  PubMed  Google Scholar 

  40. Tang CK, Gong XQ, Moscatello DK, Wong AJ, Lippman ME . Epidermal growth factor receptor vIII enhances tumorigenicity in human breast cancer. Cancer Res 2000; 60: 3081–3087.

    CAS  PubMed  Google Scholar 

  41. Estrada-Bernal A, Lawler SE, Nowicki MO, Ray Chaudhury A, Van Brocklyn JR . The role of sphingosine kinase-1 in EGFRvIII-regulated growth and survival of glioblastoma cells. J Neurooncol 2011; 102: 353–366.

    Article  CAS  PubMed  Google Scholar 

  42. Smith K, Gunaratnam L, Morley M, Franovic A, Mekhail K, Lee S . Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL-/- renal cancer. Cancer Res 2005; 65: 5221–5230.

    Article  CAS  PubMed  Google Scholar 

  43. Puliyappadamba VT, Chakraborty S, Chauncey SS, Li L, Hatanpaa KJ, Mickey B et al. Opposing effect of EGFRwt on EGFRvIII mediated NF-kappaB activation with RIP1 as a cell death switch. Cell Reports 2013; 4: 764–775.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Mien-Chie Hung (MD Anderson Cancer Center) for the EGFRwt-Myc plasmid and Dr James Van Brocklyn (Ohio State University) for GBM9 cells. This work was supported in part by NIH grant RO1NS062080 to AH and by RO1 CA139217 to DAB. SB is supported by grants from the National Institutes of Health (RO1 CA149461), National Aeronautics and Space Administration (NNX13AI13G) and the Cancer Prevention and Research Institute of Texas (RP100644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Habib.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Chakraborty, S., Yang, CR. et al. An EGFR wild type–EGFRvIII–HB-EGF feed-forward loop regulates the activation of EGFRvIII. Oncogene 33, 4253–4264 (2014). https://doi.org/10.1038/onc.2013.400

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.400

Keywords

This article is cited by

Search

Quick links