Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Activation of β-catenin/TCF targets following loss of the tumor suppressor SNF5

Abstract

The SWI/SNF chromatin remodeling complex is a master regulator of developmental cell-fate decisions, although the key target pathways are poorly characterized. Here, we interrogated the contribution of the SWI/SNF subunit and tumor suppressor SNF5 to the regulation of developmental pathways using conditional mouse and cell culture models. We find that loss of SNF5 phenocopies β-catenin hyperactivation and that SNF5 is essential for regulating Wnt/β-catenin pathway target expression. These data provide insight into chromatin-based mechanisms that underlie developmental regulation and elucidate the emerging theme that mutation of this tumor suppressor complex can activate developmental pathways by uncoupling them from upstream control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. de la Serna IL, Ohkawa Y, Imbalzano AN . Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 2006; 7: 461–473.

    Article  CAS  PubMed  Google Scholar 

  2. Ho L, Crabtree GR . Chromatin remodelling during development. Nature 2010; 463: 474–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilson BG, Roberts CW . SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 2011; 11: 481–492.

    Article  CAS  PubMed  Google Scholar 

  4. Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH . Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA 2000; 97: 13796–13800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klochendler-Yeivin A, Fiette L, Barra J, Muchardt C, Babinet C, Yaniv M . The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep 2000; 1: 500–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guidi CJ, Sands AT, Zambrowicz BP, Turner TK, Demers DA, Webster W et al. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol 2001; 21: 3598–3603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Versteege I, Sévenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998; 394: 203–206.

    Article  CAS  PubMed  Google Scholar 

  8. Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B . Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 1999; 59: 74–79.

    CAS  PubMed  Google Scholar 

  9. Roberts CWM, Leroux MM, Fleming MD, Orkin SH . Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2002; 2: 415–425.

    Article  CAS  PubMed  Google Scholar 

  10. McKenna ES, Sansam CG, Cho Y-J, Greulich H, Evans JA, Thom CS et al. Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol Cell Biol 2008; 28: 6223–6233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McKenna ES, Roberts CW . Epigenetics and cancer without genomic instability. Cell Cycle 2009; 8: 23–26.

    Article  CAS  PubMed  Google Scholar 

  12. Gresh L, Bourachot B, Reimann A, Guigas B, Fiette L, Garbay S et al. The SWI/SNF chromatin-remodeling complex subunit SNF5 is essential for hepatocyte differentiation. EMBO J. 2005; 24: 3313–3324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson BG, Wang X, Shen X, Mckenna ES, Lemieux ME, Cho Y-J et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 2010; 18: 316–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jagani Z, Mora-Blanco EL, Sansam CG, McKenna ES, Wilson B, Chen D et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat Med 2010; 16: 1429–1433.

    Article  CAS  PubMed  Google Scholar 

  15. Griffin CT, Curtis CD, Davis RB, Muthukumar V, Magnuson T . The chromatin-remodeling enzyme BRG1 modulates vascular Wnt signaling at two levels. Proc Natl Acad Sci USA 2011; 108: 2282–2287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park J-I, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 2009; 460: 66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Curtis CD, Griffin CT . The chromatin-remodeling enzymes BRG1 and CHD4 antagonistically regulate vascular Wnt signaling. Mol Cell Biol 2012; 32: 1312–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahmoudi T, Boj SF, Hatzis P, Li VS, Taouatas N, Vries RG et al. The leukemia-associated Mllt10/Af10-Dot1l are Tcf4/beta-catenin coactivators essential for intestinal homeostasis. PLoS Biol 2010; 8: e1000539.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ . Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 2002; 33: 77–80.

    Article  CAS  PubMed  Google Scholar 

  20. Hill TP, Später D, Taketo MM, Birchmeier W, Hartmann C . Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 2005; 8: 727–738.

    Article  CAS  PubMed  Google Scholar 

  21. Hill TP, Taketo MM, Birchmeier W, Hartmann C . Multiple roles of mesenchymal beta-catenin during murine limb patterning. Development 2006; 133: 1219–1229.

    Article  CAS  PubMed  Google Scholar 

  22. Chien AJ, Conrad WH, Moon RT . A Wnt survival guide: from flies to human disease. J Invest Dermatol 2009; 129: 1614–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DasGupta R, Fuchs E . Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 1999; 126: 4557–4568.

    CAS  PubMed  Google Scholar 

  24. Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 2011; 29: 1424–1430.

    Article  PubMed  Google Scholar 

  25. Oruetxebarria I, Venturini F, Kekarainen T, Houweling A, Zuijderduijn LMP, Mohd-Sarip A et al. P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells. J Biol Chem 2004; 279: 3807–3816.

    Article  CAS  PubMed  Google Scholar 

  26. Ettenberg SA, Charlat O, Daley MP, Liu S, Vincent KJ, Stuart DD et al. Inhibition of tumorigenesis driven by different Wnt proteins requires blockade of distinct ligand-binding regions by LRP6 antibodies. Proc Natl Acad Sci USA 2010; 107: 15473–15478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang S-MA, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009; 461: 614–620.

    Article  CAS  PubMed  Google Scholar 

  28. Miller KA, Barrow J, Collinson JM, Davidson S, Lear M, Hill RE et al. A highly conserved Wnt-dependent TCF4 binding site within the proximal enhancer of the anti-myogenic Msx1 gene supports expression within Pax3-expressing limb bud muscle precursor cells. Dev Biol 2007; 311: 665–678.

    Article  CAS  PubMed  Google Scholar 

  29. Hu MC, Rosenblum ND . Smad1, beta-catenin and Tcf4 associate in a molecular complex with the Myc promoter in dysplastic renal tissue and cooperate to control Myc transcription. Development 2005; 132: 215–225.

    Article  CAS  PubMed  Google Scholar 

  30. Bottomly D, Kyler SL, McWeeney SK, Yochum GS . Identification of {beta}-catenin binding regions in colon cancer cells using ChIP-Seq. Nucleic Acids Res 2010; 38: 5735–5745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Collins RT, Treisman JE . Osa-containing Brahma chromatin remodeling complexes are required for the repression of wingless target genes. Genes Dev 2000; 14: 3140–3152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H . The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J. 2001; 20: 4935–4943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chi TH, Wan M, Lee PP, Akashi K, Metzger D, Chambon P et al. Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity 2003; 19: 169–182.

    Article  CAS  PubMed  Google Scholar 

  34. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 2012; 488: 43–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee RS, Stewart C, Carter SL, Ambrogio L, Cibulskis K, Sougnez C et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J Clin Invest 2012; 122: 2983–2988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ngo-Muller V, Muneoka K . Influence of FGF4 on digit morphogenesis during limb development in the mouse. Dev Biol 2000; 219: 224–236.

    Article  CAS  PubMed  Google Scholar 

  37. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009; 37 (Database issue): D674–D679.

    Article  CAS  PubMed  Google Scholar 

  38. Willert J, Epping M, Pollack JR, Brown PO, Nusse R . A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol 2002; 2: 8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank ES McKenna for critical reading of the manuscript and A Lassar for helpful discussions. The in situ probe constructs were generously provided by C Tabin (Harvard Medical School). This work was supported in part by National Cancer Institute, National Institutes of Health Pre-Doctoral NRSA award 1F31CA130553 (ELMB), R01CA113794 (CWMR) and U01-1156106 (Stuart H Orkin). CWM R is a recipient of a Stand Up 2 Cancer Innovative Research Grant. Miles for Mary, The Garrett B Smith Foundation and Cure AT/RT Now provided additional support.

Author contributions: E.L.M-B initiated the studies, conducted experiments, analyzed data and contributed to writing the manuscript. Y.M., E.J.T, Y-J.C. and C.S.T conducted experiments and analyzed data. S.L.P and W.S. supervised portions of the studies and assisted in the data analysis. C.W.M.R supervised the studies, assisted in the data analysis and contributed to the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C W M Roberts.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mora-Blanco, E., Mishina, Y., Tillman, E. et al. Activation of β-catenin/TCF targets following loss of the tumor suppressor SNF5. Oncogene 33, 933–938 (2014). https://doi.org/10.1038/onc.2013.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.37

Keywords

This article is cited by

Search

Quick links