Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutations in 3′-long terminal repeat of HERV-W family in chromosome 7 upregulate syncytin-1 expression in urothelial cell carcinoma of the bladder through interacting with c-Myb

Abstract

Human endogenous retrovirus (HERV) accounts for 8% of the human genome. Recent studies have reported that multiple HERV genes and long terminal repeats (LTRs) are involved in human tumorigenesis. Here we demonstrated that HERV-W env (syncytin-1) was overexpressed in 75.6% (62/82) of urothelial cell carcinoma (UCC) tissues of the bladder compared with only 6.1% (5/82) of matched tumor-adjacent tissues (P<0.001). Syncytin-1 overexpression increased proliferation and viability of immortalized human uroepithelial cells. Colony-formation experiments and in-vivo tumor xenografts suggested that syncytin-1 overexpression had oncogenic potential. Syncytin-1 3′-LTR mutations (142T>C and 277A>G) were present in 87.8% (72/82) of UCC tissues. Normal 3′-LTR was found in 12.2% (10/82) of UCC tissues compared with 95.1% (78/82) of matched tumor-adjacent tissues (P<0.001). Interestingly, 3′-LTR mutations were significantly associated with syncytin-1 overexpression. Luciferase assay and expression analysis revealed that 3′-LTR mutations, especially the 142T>C mutation, enhanced the syncytin-1 promoter activity and expression. In-silico analysis, electrophoretic mobility shift assays and chromatin immunoprecipitation assays demonstrated the binding of c-Myb to 3′-LTRs when the mutations occurred. This alternative interaction was found to be dependent on 142T>C mutation. C-Myb activated syncytin-1 promoter activity and expression by binding to mutant 3′-LTRs. Taken together, these data indicate that syncytin-1 overexpression may be an indicator of UCC risk. The 3′-LTR mutations may upregulate syncytin-1 expression, enabling it to participate in UCC tumorigenesis and development by interacting with c-Myb.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.

    Article  CAS  PubMed  Google Scholar 

  2. Strick R, Ackermann S, Langbein M, Swiatek J, Schubert SW, Hashemolhosseini S et al. Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J Mol Med (Berl) 2007; 85: 23–38.

    Article  CAS  Google Scholar 

  3. Wang-Johanning F, Liu J, Rycaj K, Huang M, Tsai K, Rosen DG et al. Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int J Cancer 2007; 120: 81–90.

    Article  CAS  PubMed  Google Scholar 

  4. Stauffer Y, Theiler G, Sperisen P, Lebedev Y, Jongeneel CV . Digital expression profiles of human endogenous retroviral families in normal and cancerous tissues. Cancer Immun 2004; 4: 2.

    PubMed  Google Scholar 

  5. Frendo JL, Olivier D, Cheynet V, Blond JL, Bouton O, Vidaud M et al. Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol 2003; 23: 3566–3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mallet F, Bouton O, Prudhomme S, Cheynet V, Oriol G, Bonnaud B et al. The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci USA 2004; 101: 1731–1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bjerregaard B, Holck S, Christensen IJ, Larsson LI, Duelli D, Lazebnik Y . Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci 2006; 63: 1906–1911.

    Article  CAS  PubMed  Google Scholar 

  8. Gimenez J, Montgiraud C, Pichon JP, Bonnaud B, Arsac M, Ruel K et al. Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control. Nucleic Acids Res 2010; 38: 2229–2246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Landry JR, Mager DL . Widely spaced alternative promoters, conserved between human and rodent, control expression of the Opitz syndrome gene MID1. Genomics 2002; 80: 499–508.

    Article  CAS  PubMed  Google Scholar 

  10. Sin HS, Huh JW, Kim DS, Kang DW, Min DS, Kim TH et al. Transcriptional control of the HERV-H LTR element of the GSDML gene in human tissues and cancer cells. Arch Virol 2006; 151: 1985–1994.

    Article  CAS  PubMed  Google Scholar 

  11. Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA, Mager DL . Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet 2007; 3: e10.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M, Lenze D et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med 2010; 16: 571–579.

    Article  CAS  PubMed  Google Scholar 

  13. Prudhomme S, Oriol G, Mallet F . A retroviral promoter and a cellular enhancer define a bipartite element which controls env ERVWE1 placental expression. J Virol 2004; 78: 12157–12168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramsay RG, Gonda TJ . MYB function in normal and cancer cells. Nat Rev Cancer 2008; 8: 523–534.

    Article  CAS  PubMed  Google Scholar 

  15. Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 2000; 405: 974–978.

    Article  CAS  PubMed  Google Scholar 

  16. Okamoto M, Kawai K, Reznikoff CA, Oyasu R . Transformation in vitro of a nontumorigenic rat urothelial cell line by hydrogen peroxide. Cancer Res 1996; 56: 4649–4653.

    CAS  PubMed  Google Scholar 

  17. Christian BJ, Loretz LJ, Oberley TD, Reznikoff CA . Characterization of human uroepithelial cells immortalized in vitro by simian virus 40. Cancer Res 1987; 47: 6066–6073.

    CAS  PubMed  Google Scholar 

  18. Ruprecht K, Mayer J, Sauter M, Roemer K, Mueller-Lantzsch N . Endogenous retroviruses and cancer. Cell Mol Life Sci 2008; 65: 3366–3382.

    Article  CAS  PubMed  Google Scholar 

  19. Ahn K, Kim HS . Structural and quantitative expression analyses of HERV gene family in human tissues. Mol Cells 2009; 28: 99–103.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao J, Rycaj K, Geng S, Li M, Plummer JB, Yin B et al. Expression of human endogenous retrovirus type K envelope protein is a novel candidate prognostic marker for human breast cancer. Genes Cancer 2011; 2: 914–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang-Johanning F, Frost AR, Johanning GL, Khazaeli MB, LoBuglio AF, Shaw DR et al. Expression of human endogenous retrovirus k envelope transcripts in human breast cancer. Clin Cancer Res 2001; 7: 1553–1560.

    CAS  PubMed  Google Scholar 

  22. Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW, Johanning GL . Quantitation of HERV-K env gene expression and splicing in human breast cancer. Oncogene 2003; 22: 1528–1535.

    Article  CAS  PubMed  Google Scholar 

  23. Knerr I, Schnare M, Hermann K, Kausler S, Lehner M, Vogler T et al. Fusiogenic endogenous-retroviral syncytin-1 exerts anti-apoptotic functions in staurosporine-challenged CHO cells. Apoptosis 2007; 12: 37–43.

    Article  CAS  PubMed  Google Scholar 

  24. Kerbel RS, Lagarde AE, Dennis JW, Donaghue TP . Spontaneous fusion in vivo between normal host and tumor cells: possible contribution to tumor progression and metastasis studied with a lectin-resistant mutant tumor. Mol Cell Biol 1983; 3: 523–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968–973.

    Article  CAS  PubMed  Google Scholar 

  26. Rizvi AZ, Swain JR, Davies PS, Bailey AS, Decker AD, Willenbring H et al. Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci USA 2006; 103: 6321–6325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu X, Kang Y . Cell fusion as a hidden force in tumor progression. Cancer Res 2009; 69: 8536–8539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu X, Kang Y . Cell fusion hypothesis of the cancer stem cell. Adv Exp Med Biol 2011; 714: 129–140.

    Article  CAS  PubMed  Google Scholar 

  29. Evan GI, Vousden KH . Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411: 342–348.

    Article  CAS  PubMed  Google Scholar 

  30. Perron H, Germi R, Bernard C, Garcia-Montojo M, Deluen C, Farinelli L et al. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Mult Scler 2012; 18: 1721–1736.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang W, Li S, Hu Y, Yu H, Luo F, Zhang Q et al. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia. Schizophr Bull 2011; 37: 988–1000.

    Article  PubMed  Google Scholar 

  32. Yu C, Shen K, Lin M, Chen P, Lin C, Chang GD et al. GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem 2002; 277: 50062–50068.

    Article  CAS  PubMed  Google Scholar 

  33. Schubert SW, Abendroth A, Kilian K, Vogler T, Mayr B, Knerr I et al. bZIP-Type transcription factors CREB and OASIS bind and stimulate the promoter of the mammalian transcription factor GCMa/Gcm1 in trophoblast cells. Nucleic Acids Res 2008; 36: 3834–3846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Delidaki M, Gu M, Hein A, Vatish M, Grammatopoulos DK . Interplay of cAMP and MAPK pathways in hCG secretion and fusogenic gene expression in a trophoblast cell line. Mol Cell Endocrinol 2011; 332: 213–220.

    Article  CAS  PubMed  Google Scholar 

  35. Xiao X, Li BX, Mitton B, Ikeda A, Sakamoto KM . Targeting CREB for cancer therapy: friend or foe. Curr Cancer Drug Targets 2010; 10: 384–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boese A, Sauter M, Galli U, Best B, Herbst H, Mayer J et al. Human endogenous retrovirus protein cORF supports cell transformation and associates with the promyelocytic leukemia zinc finger protein. Oncogene 2000; 19: 4328–4336.

    Article  CAS  PubMed  Google Scholar 

  37. Liu F, Lei W, O'Rourke JP, Ness SA . Oncogenic mutations cause dramatic, qualitative changes in the transcriptional activity of c-Myb. Oncogene 2006; 25: 795–805.

    Article  CAS  PubMed  Google Scholar 

  38. Eble JN . World Health Organization Classification of Tumors. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. IARC Press, France, 2004.

    Google Scholar 

  39. Edge SB . AJCC Cancer Staging Manual. Springer, USA, 2010.

    Google Scholar 

  40. Roszell AJ, Douglas CJ, Irving CC . Polyamine-stimulated growth of cultured rat urinary bladder epithelial cell. Cancer Res 1977; 37: 239–243.

    CAS  PubMed  Google Scholar 

  41. Nellaker C, Yao Y, Jones-Brando L, Mallet F, Yolken RH, Karlsson H . Transactivation of elements in the human endogenous retrovirus W family by viral infection. Retrovirology 2006; 3: 44.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 2005; 23: 1803–1810.

    Article  CAS  PubMed  Google Scholar 

  43. Doern CD, Holder RC, Reid SD . Point mutations within the streptococcal regulator of virulence (Srv) alter protein-DNA interactions and Srv function. Microbiology 2008; 154: 1998–2007.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu F, Liu ZC, Li WX, Xu XL . Rapid identification of Quox-1 homeodomain DNA-binding sequence using SAAB. Biochemistry (Mosc) 2005; 70: 920–925.

    Article  CAS  Google Scholar 

  45. Wei W, Huang W, Pan Y, Zhu F, Wu J . Functional switch of viral protein HBx on cell apoptosis, transformation, and tumorigenesis in association with oncoprotein Ras. Cancer Lett 2006; 244: 119–128.

    Article  CAS  PubMed  Google Scholar 

  46. Sali A, Blundell TL . Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 234: 779–815.

    Article  CAS  PubMed  Google Scholar 

  47. Joshi R, Passner JM, Rohs R, Jain R, Sosinsky A, Crickmore MA et al. Functional specificity of a Hox protein mediated by the recognition of minor groove structure. Cell 2007; 131: 530–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tahirov TH, Sato K, Ichikawa-Iwata E, Sasaki M, Inoue-Bungo T, Shiina M et al. Mechanism of c-Myb-C/EBP beta cooperation from separated sites on a promoter. Cell 2002; 108: 57–70.

    Article  CAS  PubMed  Google Scholar 

  49. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M . CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 1983; 4: 187–217.

    Article  CAS  Google Scholar 

  50. Humphrey W, Dalke A, Schulten K . VMD: visual molecular dynamics. J Mol Graph 1996; 14: 33–38.

    Article  CAS  PubMed  Google Scholar 

  51. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E et al. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26: 1781–1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mackerell AD Jr, Feig M, Brooks CL III . Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 2004; 25: 1400–1415.

    Article  CAS  PubMed  Google Scholar 

  53. Luty BA, Davis ME, Tironi IG, Vangunsteren WF . A comparison of particle-particle, particle-mesh and Ewald methods for calculating electrostatic interactions. Mol Simul 1994; 14: 11–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Wei Jin (Fudan University, Shanghai, China) for providing the plasmid pCMV-c-Myb. We would like to thank Don Banting, Awadhesh Kumar Sah and Navin Shrestha for polishing our writing. This work was supported by grants from the National Natural Sciences Foundation of China (No. 81271820, No. 30870789 and No. 30300117), the Stanley Foundation from the Stanley Medical Research Institute (SMRI), USA (No. 06R-1366) for Dr F Zhu, Hubei Provincial Natural Science Foundation for Innovative Research Team (No. 2012FFA043) and the project of Innovative Research Team of Wuhan University (No. 274041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Zhu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Liu, T., Zhao, Z. et al. Mutations in 3′-long terminal repeat of HERV-W family in chromosome 7 upregulate syncytin-1 expression in urothelial cell carcinoma of the bladder through interacting with c-Myb. Oncogene 33, 3947–3958 (2014). https://doi.org/10.1038/onc.2013.366

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.366

Keywords

This article is cited by

Search

Quick links