Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The transcriptional co-activator SND1 is a novel regulator of alternative splicing in prostate cancer cells

Abstract

Splicing abnormalities have profound impact in human cancer. Several splicing factors, including SAM68, have pro-oncogenic functions, and their increased expression often correlates with human cancer development and progression. Herein, we have identified using mass spectrometry proteins that interact with endogenous SAM68 in prostate cancer (PCa) cells. Among other interesting proteins, we have characterized the interaction of SAM68 with SND1, a transcriptional co-activator that binds spliceosome components, thus coupling transcription and splicing. We found that both SAM68 and SND1 are upregulated in PCa cells with respect to benign prostate cells. Upregulation of SND1 exerts a synergic effect with SAM68 on exon v5 inclusion in the CD44 mRNA. The effect of SND1 on CD44 splicing required SAM68, as it was compromised after knockdown of this protein or mutation of the SAM68-binding sites in the CD44 pre-mRNA. More generally, we found that SND1 promotes the inclusion of CD44 variable exons by recruiting SAM68 and spliceosomal components on CD44 pre-mRNA. Inclusion of the variable exons in CD44 correlates with increased proliferation, motility and invasiveness of cancer cells. Strikingly, we found that knockdown of SND1, or SAM68, reduced proliferation and migration of PCa cells. Thus, our findings strongly suggest that SND1 is a novel regulator of alternative splicing that promotes PCa cell growth and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wahl MC, Will CL, Lührmann R . The spliceosome: design principles of a dynamic RNP machine. Cell 2009; 136: 701–718.

    Article  CAS  Google Scholar 

  2. Chen M, Manley JL . Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 2009; 10: 741–754.

    Article  CAS  Google Scholar 

  3. Kalsotra A, Cooper TA . Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 2011; 12: 715–729.

    Article  CAS  Google Scholar 

  4. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ . Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008; 40: 1413–1415.

    Article  CAS  Google Scholar 

  5. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456: 470–476.

    Article  CAS  Google Scholar 

  6. Tazi J, Bakkour N, Stamm S . Alternative splicing and disease. Biochim Biophys Acta 2009; 1792: 14–26.

    Article  CAS  Google Scholar 

  7. Carrillo Oesterreich F, Bieberstein N, Neugebauer KM . Pause locally, splice globally. Trends Cell Biol 2011; 21: 328–335.

    Article  Google Scholar 

  8. Shukla S, Oberdoerffer S . Co-transcriptional regulation of alternative pre-mRNA splicing. Biochim Biophys Acta 2012; 1819: 673–683.

    Article  CAS  Google Scholar 

  9. Hsin JP, Manley JL . The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26: 2119–2137.

    Article  CAS  Google Scholar 

  10. Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ . Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 2013; 14: 153–165.

    Article  CAS  Google Scholar 

  11. Fong YW, Zhou Q . Stimulatory effect of splicing factors on transcriptional elongation. Nature 2001; 414: 929–933.

    Article  CAS  Google Scholar 

  12. Lin S, Coutinho-Mansfield G, Wang D, Pandit S, Fu XD . The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 2008; 15: 819–826.

    Article  CAS  Google Scholar 

  13. de la Mata M, Alonso CR, Kadener S, Fededa JP, Blaustein M, Pelisch F et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 2003; 12: 525–532.

    Article  CAS  Google Scholar 

  14. David CJ, Manley JL . Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 2010; 24: 2343–2364.

    Article  CAS  Google Scholar 

  15. Grosso AR, Martins S, Carmo-Fonseca M . The emerging role of splicing factors in cancer. EMBO Rep 2008; 9: 1087–1093.

    Article  CAS  Google Scholar 

  16. Germann S, Gratadou L, Dutertre M, Auboeuf D . Splicing programs and cancer. J Nucleic Acids 2012; 2012: 269570.

    Article  Google Scholar 

  17. Bielli P, Busà R, Paronetto MP, Sette C . The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Relat Cancer 2011; 18: R91–R102.

    Article  CAS  Google Scholar 

  18. Hong W, Resnick RJ, Rakowski C, Shalloway D, Taylor SJ, Blobel GA . Physical and functional interaction between the transcriptional cofactor CBP and the KH domain protein Sam68. Mol Cancer Res 2002; 1: 48–55.

    CAS  Google Scholar 

  19. Taylor SJ, Resnick RJ, Shalloway D . Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biol 2004; 5: 5–16.

    Article  Google Scholar 

  20. Babic I, Cherry E, Fujita DJ . SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Oncogene 2006; 25: 4955–4964.

    Article  CAS  Google Scholar 

  21. Rajan P, Gaughan L, Dalgliesh C, El-Sherif A, Robson CN, Leung HY et al. The RNA-binding and adaptor protein Sam68 modulates signal-dependent splicing and transcriptional activity of the androgen receptor. J Pathol 2008; 215: 67–77.

    Article  CAS  Google Scholar 

  22. Matter N, Herrlich P, König H . Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 2002; 420: 691–695.

    Article  CAS  Google Scholar 

  23. Paronetto MP, Achsel T, Massiello A, Chalfant CE, Sette C . The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol 2007; 176: 929–939.

    Article  CAS  Google Scholar 

  24. Paronetto MP, Cappellari M, Busà R, Pedrotti S, Vitali R, Comstock C et al. Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68. Cancer Res 2010; 70: 229–239.

    Article  CAS  Google Scholar 

  25. Chawla G, Lin CH, Han A, Shiue L, Ares M Jr, Black DL . Sam68 regulates a set of alternatively spliced exons during neurogenesis. Mol Cell Biol 2009; 29: 201–213.

    Article  CAS  Google Scholar 

  26. Paronetto MP, Zalfa F, Botti F, Geremia R, Bagni C, Sette C . The nuclear RNA-binding protein Sam68 translocates to the cytoplasm and associates with the polysomes in mouse spermatocytes. Mol Biol Cell 2006; 17: 14–24.

    Article  CAS  Google Scholar 

  27. Paronetto MP, Messina V, Bianchi E, Barchi M, Vogel G, Moretti C et al. Sam68 regulates translation of target mRNAs in male germ cells, necessary for mouse spermatogenesis. J Cell Biol. 2009; 185: 235–249.

    Article  CAS  Google Scholar 

  28. Grange J, Belly A, Dupas S, Trembleau A, Sadoul R, Goldberg Y . Specific interaction between Sam68 and neuronal mRNAs: implication for the activity-dependent biosynthesis of elongation factor eEF1A. J Neurosci Res 2009; 87: 12–25.

    Article  CAS  Google Scholar 

  29. Busà R, Paronetto MP, Farini D, Pierantozzi E, Botti F, Angelini DF et al. The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene 2007; 26: 4372–4382.

    Article  Google Scholar 

  30. Busà R, Geremia R, Sette C . Genotoxic stress causes the accumulation of the splicing regulator Sam68 in nuclear foci of transcriptionally active chromatin. Nucleic Acids Res 2010; 38: 3005–3018.

    Article  Google Scholar 

  31. Elliott DJ, Rajan P . The role of the RNA-binding protein Sam68 in mammary tumourigenesis. J Pathol 2010; 222: 223–226.

    Article  CAS  Google Scholar 

  32. Lukong KE, Richard S . Sam68, the KH domain-containing superSTAR. Biochem Biophys Acta 2003; 1653: 73–86.

    CAS  Google Scholar 

  33. Sette C . Post-translational regulation of star proteins and effects on their biological functions. Adv Exp Med Biol 2010; 693: 54–66.

    Article  CAS  Google Scholar 

  34. Yang J, Aittomäki S, Pesu M, Carter K, Saarinen J, Kalkkinen N et al. Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. EMBO J 2002; 21: 4950–4958.

    Article  CAS  Google Scholar 

  35. Välineva T, Yang J, Palovuori R, Silvennoinen O . The transcriptional co-activator protein p100 recruits histone acetyltransferase activity to STAT6 and mediates interaction between the CREB-binding protein and STAT6. J Biol Chem 2005; 280: 14989–14996.

    Article  Google Scholar 

  36. Yang J, Välineva T, Hong J, Bu T, Yao Z, Jensen ON et al. Transcriptional co-activator protein p100 interacts with snRNP proteins and facilitates the assembly of the spliceosome. Nucleic Acids Res 2007; 35: 4485–4494.

    Article  CAS  Google Scholar 

  37. Gao X, Zhao X, Zhu Y, He J, Shao J, Su C et al. Tudor staphylococcal nuclease (Tudor-SN) participates in small ribonucleoprotein (snRNP) assembly via interacting with symmetrically dimethylated Sm proteins. J Biol Chem 2012; 287: 18130–18141.

    Article  CAS  Google Scholar 

  38. Caudy AA, Ketting RF, Hammond SM, Denli AM, Bathoorn AM, Tops BB et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature 2003; 425: 411–414.

    Article  CAS  Google Scholar 

  39. Ho J, Kong JW, Choong LY, Loh MC, Toy W, Chong PK et al. Novel breast cancer metastasis-associated proteins. J Proteome Res 2009; 8: 583–594.

    Article  CAS  Google Scholar 

  40. Blanco MA, Alečković M, Hua Y, Li T, Wei Y, Xu Z et al. Identification of staphylococcal nuclease domain-containing 1 (SND1) as a Metadherin-interacting protein with metastasis-promoting functions. J Biol Chem 2011; 286: 19982–19992.

    Article  CAS  Google Scholar 

  41. Tsuchiya N, Ochiai M, Nakashima K, Ubagai T, Sugimura T, SND1 Nakagama H . a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. Cancer Res 2007; 67: 9568–9576.

    Article  CAS  Google Scholar 

  42. Yoo BK, Santhekadur PK, Gredler R, Chen D, Emdad L, Bhutia S et al. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology 2011; 53: 1538–1548.

    Article  CAS  Google Scholar 

  43. Kuruma H, Kamata Y, Takahashi H, Igarashi K, Kimura T, Miki K et al. Staphylococcal nuclease domain-containing protein 1 as a potential tissue marker for prostate cancer. Am J Pathol 2009; 174: 2044–2050.

    Article  CAS  Google Scholar 

  44. Yang JP, Reddy TR, Truong KT, Suhasini M, Wong-Staal F . Functional interaction of Sam68 and heterogeneous nuclear ribonucleoprotein K. Oncogene 2002; 21: 7187–7194.

    Article  CAS  Google Scholar 

  45. Huot ME, Vogel G, Richard S . Identification of a Sam68 ribonucleoprotein complex regulated by epidermal growth factor. J Biol Chem 2009; 284: 31903–31913.

    Article  CAS  Google Scholar 

  46. Dong X, Sweet J, Challis JR, Brown T, Lye SJ . Transcriptional activity of androgen receptor is modulated by two RNA splicing factors, PSF and p54nrb. Mol Cell Biol 2007; 27: 4863–4875.

    Article  CAS  Google Scholar 

  47. Cheng C, Sharp PA . Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol Cell Biol 2006; 26: 362–370.

    Article  CAS  Google Scholar 

  48. Tisserant A, König H . Signal-regulated Pre-mRNA occupancy by the general splicing factor U2AF. PLoS One 2008; 3: e1418.

    Article  Google Scholar 

  49. Zöller M . CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 2011; 11: 254–267.

    Article  Google Scholar 

  50. Batsché E, Yaniv M, Muchardt C . The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 2006; 13: 22–29.

    Article  Google Scholar 

  51. Singh J, Padgett RA . Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 2009; 16: 1128–1133.

    Article  CAS  Google Scholar 

  52. Paronetto MP, Messina V, Barchi M, Geremia R, Richard S, Sette C . Sam68 marks the transcriptionally active stages of spermatogenesis and modulates alternative splicing in male germ cells. Nucleic Acids Res 2011; 39: 4961–4974.

    Article  CAS  Google Scholar 

  53. Cheng C, Yaffe MB, Sharp PA . A positive feedback loop couples Ras activation and CD44 alternative splicing. Genes Dev 2006; 20: 1715–1720.

    Article  CAS  Google Scholar 

  54. Santhekadur PK, Das SK, Gredler R, Chen D, Srivastava J, Robertson C et al. Multifunction protein staphylococcal nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human hepatocellular carcinoma through novel pathway that involves nuclear factor κB and miR-221. J Biol Chem 2012; 287: 13952–13958.

    Article  CAS  Google Scholar 

  55. Ameyar-Zazoua M, Rachez C, Souidi M, Robin P, Fritsch L, Young R et al. Argonaute proteins couple chromatin silencing to alternative splicing. Nat Struct Mol Biol 2012; 19: 998–1004.

    Article  CAS  Google Scholar 

  56. Messina V, Meikar O, Paronetto MP, Calabretta S, Geremia R, Kotaja N et al. The RNA binding protein SAM68 transiently localizes in the chromatoid body of male germ cells and influences expression of select microRNAs. PLoS One 2012; 7: e39729.

    Article  CAS  Google Scholar 

  57. Song L, Wang L, Li Y, Xiong H, Wu J, Li J et al. Sam68 up-regulation correlates with, and its down-regulation inhibits, proliferation and tumourigenicity of breast cancer cells. J Pathol 2010; 222: 227–237.

    Article  CAS  Google Scholar 

  58. Pedrotti S, Bielli P, Paronetto MP, Ciccosanti F, Fimia GM, Stamm S et al. The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy. EMBO J 2010; 29: 1235–1247.

    Article  CAS  Google Scholar 

  59. Sergeant KA, Bourgeois CF, Dalgliesh C, Venables JP, Stevenin J, Elliott DJ . Alternative RNA splicing complexes containing the scaffold attachment factor SAFB2. J Cell Sci 2007; 120: 309–319.

    Article  CAS  Google Scholar 

  60. Sette C, Bevilacqua A, Geremia R, Rossi P. . Involvement of phospholipase Cgamma1 in mouse egg activation induced by a truncated form of the C-kit tyrosine kinase present in spermatozoa. J Cell Biol 1998; 142: 1063–1074.

    Article  CAS  Google Scholar 

  61. Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA. . Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 2002; 26: 182–190.

    Article  CAS  Google Scholar 

  62. Zhou HL, Hinman MN, Barron VA, Geng C, Zhou G, Luo G et al. Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner. Proc Natl Acad Sci USA 2011; 108: E627–E635.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr Roberta Busà for suggestions with chromatin immunoprecipitation experiments and Dr Maria Loiarro for assistance with luciferase reporter assays. This work was supported by the Association for International Cancer Research (AICR grant no. 12-0150 to CS) and the Associazione Italiana Ricerca sul Cancro (AIRC grant no. 10348 to CS and MFAG no. 11658 to MPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Sette.

Ethics declarations

Competing interests

The authors declare no conflict of interests.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappellari, M., Bielli, P., Paronetto, M. et al. The transcriptional co-activator SND1 is a novel regulator of alternative splicing in prostate cancer cells. Oncogene 33, 3794–3802 (2014). https://doi.org/10.1038/onc.2013.360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.360

Keywords

This article is cited by

Search

Quick links