Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Opportunities and hurdles in the treatment of BRCA1-related breast cancer

Abstract

BRCA1 functions as a classical tumor suppressor in breast and ovarian cancer. While the role of BRCA1 in homology-directed repair of DNA double-strand breaks contributes to its tumor suppressive activity, it also renders BRCA1-deficient cells highly sensitive to DNA-damaging agents. Although BRCA1 deficiency is therefore considered to be an attractive therapeutic target, re-activation of BRCA1 by secondary mutations has been shown to cause therapy resistance. In this review, we will assess the role of BRCA1 in both hereditary and sporadic breast cancer and discuss how different functionalities of the BRCA1 protein can contribute to its tumor suppressor function. In addition, we will discuss how this knowledge on BRCA1 function can help to overcome the hurdles encountered in the clinic and improve current treatment strategies for patients with BRCA1-related breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Google Scholar 

  2. Althuis MD, Dozier JM, Anderson WF, Devesa SS, Brinton LA . Global trends in breast cancer incidence and mortality 1973–1997. Int J Epidemiol 2005; 34: 405–412.

    Google Scholar 

  3. Reis-Filho JS, Pusztai L . Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 2011; 378: 1812–1823.

    CAS  Google Scholar 

  4. Shuen AY, Foulkes WD . Inherited mutations in breast cancer genes—risk and response. J Mammary Gland Biol Neoplasia 2011; 16: 3–15.

    Google Scholar 

  5. Clark AS, Domchek SM . Clinical management of hereditary breast cancer syndromes. J Mammary Gland Biol Neoplasia 2011; 16: 17–25.

    Google Scholar 

  6. Rennert G, Bisland-Naggan S, Barnett-Griness O, Bar-Joseph N, Zhang S, Rennert HS et al. Clinical outcomes of breast cancer in carriers of BRCA1 and BRCA2 mutations. N Engl J Med 2007; 357: 115–123.

    CAS  Google Scholar 

  7. Bordeleau L, Panchal S, Goodwin P . Prognosis of BRCA-associated breast cancer: a summary of evidence. Breast Cancer Res Treat 2010; 119: 13–24.

    CAS  Google Scholar 

  8. Roy R, Chun J, Powell SN . BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 2011; 12: 68–78.

    Google Scholar 

  9. Rahman N, Stratton MR . The genetics of breast cancer susceptibility. Annu Rev Genet 1998; 32: 95–121.

    CAS  Google Scholar 

  10. Thompson D, Easton DF . Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst 2002; 94: 1358–1365.

    CAS  Google Scholar 

  11. Cancer risks in BRCA2 mutation carriers, The Breast Cancer Linkage Consortium. J Natl Cancer Inst 1999; 91: 1310–1316.

    Google Scholar 

  12. Castilla LH, Couch FJ, Erdos MR, Hoskins KF, Calzone K, Garber JE et al. Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nat Genet 1994; 8: 387–391.

    CAS  Google Scholar 

  13. Friedman LS, Ostermeyer EA, Szabo CI, Dowd P, Lynch ED, Rowell SE et al. Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nat Genet 1994; 8: 399–404.

    CAS  Google Scholar 

  14. Whittemore AS, Gong G, Itnyre J . Prevalence and contribution of BRCA1 mutations in breast cancer and ovarian cancer: results from three U.S. population-based case-control studies of ovarian cancer. Am J Hum Genet 1997; 60: 496–504.

    CAS  Google Scholar 

  15. Risch HA, McLaughlin JR, Cole DEC, Rosen B, Bradley L, Fan I et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 2006; 98: 1694–1706.

    CAS  Google Scholar 

  16. Metcalfe KA, Poll A, Royer R, Llacuachaqui M, Tulman A, Sun P et al. Screening for founder mutations in BRCA1 and BRCA2 in unselected Jewish women. J Clin Oncol 2010; 28: 387–391.

    CAS  Google Scholar 

  17. Roa BB, Boyd AA, Volcik K, Richards CS . Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet 1996; 14: 185–187.

    CAS  Google Scholar 

  18. Rakha EA, Reis-Filho JS, Ellis IO . Basal-like breast cancer: a critical review. J Clin Oncol 2008; 26: 2568–2581.

    Google Scholar 

  19. Reis-Filho JS, Tutt ANJ . Triple negative tumours: a critical review. Histopathology 2008; 52: 108–118.

    CAS  Google Scholar 

  20. Crook T, Crossland S, Crompton MR, Osin P, Gusterson BA . p53 mutations in BRCA1-associated familial breast cancer. Lancet 1997; 350: 638–639.

    CAS  Google Scholar 

  21. Holstege H, Joosse SA, van Oostrom CTM, Nederlof PM, de Vries A, Jonkers J . High incidence of protein-truncating TP53 mutations in BRCA1-related breast cancer. Cancer Res 2009; 69: 3625–3633.

    CAS  Google Scholar 

  22. Saal LH, Gruvberger-Saal SK, Persson C, Lövgren K, Jumppanen M, Staaf J et al. Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet 2008; 40: 102–107.

    CAS  Google Scholar 

  23. Catteau A, Morris JR . BRCA1 methylation: a significant role in tumour development? Semin Cancer Biol 2002; 12: 359–371.

    CAS  Google Scholar 

  24. Cancer Genome Atlas Research Network, Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Google Scholar 

  25. Cancer Genome Atlas Network, Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Google Scholar 

  26. Turner N, Tutt A, Ashworth A . Hallmarks of “BRCAness” in sporadic cancers. Nat Rev Cancer 2004; 4: 814–819.

    CAS  Google Scholar 

  27. Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT . Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet 1995; 9: 444–450.

    CAS  Google Scholar 

  28. Magdinier F, Ribieras S, Lenoir GM, Frappart L, Dante R . Down-regulation of BRCA1 in human sporadic breast cancer; analysis of DNA methylation patterns of the putative promoter region. Oncogene 1998; 17: 3169–3176.

    CAS  Google Scholar 

  29. Russell PA, Pharoah PD, De Foy K, Ramus SJ, Symmonds I, Wilson A et al. Frequent loss of BRCA1 mRNA and protein expression in sporadic ovarian cancers. Int J Cancer 2000; 87: 317–321.

    CAS  Google Scholar 

  30. Galizia E, Giorgetti G, Piccinini G, Santinelli A, Loretelli C, Bianchi F et al. BRCA1 expression in triple negative sporadic breast cancers. Anal Quant Cytol Histol 2010; 32: 24–29.

    Google Scholar 

  31. Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 2007; 26: 2126–2132.

    Article  CAS  Google Scholar 

  32. Baldassarre G, Battista S, Belletti B, Thakur S, Pentimalli F, Trapasso F et al. Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. Mol Cell Biol 2003; 23: 2225–2238.

    Google Scholar 

  33. Dobrovic A, Simpfendorfer D . Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 1997; 57: 3347–3350.

    CAS  Google Scholar 

  34. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 2000; 92: 564–569.

    CAS  Google Scholar 

  35. Baldwin RL, Nemeth E, Tran H, Shvartsman H, Cass I, Narod S et al. BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res 2000; 60: 5329–5333.

    CAS  Google Scholar 

  36. Rice JC, Ozcelik H, Maxeiner P, Andrulis I, Futscher BW . Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis 2000; 21: 1761–1765.

    CAS  Google Scholar 

  37. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266: 66–71.

    CAS  Google Scholar 

  38. Thakur S, Zhang HB, Peng Y, Le H, Carroll B, Ward T et al. Localization of BRCA1 and a splice variant identifies the nuclear localization signal. Mol Cell Biol 1997; 17: 444–452.

    CAS  Google Scholar 

  39. Rodriguez JA, Au WWY, Henderson BR . Cytoplasmic mislocalization of BRCA1 caused by cancer-associated mutations in the BRCT domain. Exp Cell Res 2004; 293: 14–21.

    CAS  Google Scholar 

  40. Thompson ME, Robinson-Benion CL, Holt JT . An amino-terminal motif functions as a second nuclear export sequence in BRCA1. J Biol Chem 2005; 280: 21854–21857.

    CAS  Google Scholar 

  41. Huen MSY, Sy SMH, Chen J . BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol 2010; 11: 138–148.

    CAS  Google Scholar 

  42. Moynahan ME, Jasin M . Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 2010; 11: 196–207.

    CAS  Google Scholar 

  43. Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL et al. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 1996; 14: 430–440.

    CAS  Google Scholar 

  44. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 2001; 276: 14537–14540.

    CAS  Google Scholar 

  45. Brzovic PS, Lissounov A, Christensen DE, Hoyt DW, Klevit RE . A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol Cell 2006; 21: 873–880.

    CAS  Google Scholar 

  46. Christensen DE, Brzovic PS, Klevit RE . E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat Struct Mol Biol 2007; 14: 941–948.

    CAS  Google Scholar 

  47. Shabbeer S, Omer D, Berneman D, Weitzman O, Alpaugh A, Pietraszkiewicz A et al. BRCA1 targets G2/M cell cycle proteins for ubiquitination and proteasomal degradation. Oncogene (epub a head of print 17 December 2012; doi:10.1038/onc.2012.522).

    Google Scholar 

  48. Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A et al. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 2006; 127: 539–552.

    CAS  Google Scholar 

  49. Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, Schlegel BP et al. BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol 2004; 24: 8457–8466.

    CAS  Google Scholar 

  50. Ohta T, Sato K, Wu W . The BRCA1 ubiquitin ligase and homologous recombination repair. FEBS Lett 2011; 585: 2836–2844.

    CAS  Google Scholar 

  51. Cortez D, Wang Y, Qin J, Elledge SJ . Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 1999; 286: 1162–1166.

    CAS  Google Scholar 

  52. Xu B, O’Donnell AH, Kim S-T, Kastan MB . Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res 2002; 62: 4588–4591.

    CAS  Google Scholar 

  53. Kass EM, Helgadottir HR, Chen C-C, Barbera M, Wang R, Westermark UK et al. Double-strand break repair by homologous recombination in primary mouse somatic cells requires BRCA1 but not the ATM kinase. Proc Natl Acad Sci USA 2013; 110: 5564–5569.

    CAS  Google Scholar 

  54. Zhang F, Fan Q, Ren K, Andreassen PR . PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res 2009; 7: 1110–1118.

    CAS  Google Scholar 

  55. Zhang F, Ma J, Wu J, Ye L, Cai H, Xia B et al. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 2009; 19: 524–529.

    CAS  Google Scholar 

  56. Sy SMH, Huen MSY, Chen J . PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci USA 2009; 106: 7155–7160.

    CAS  Google Scholar 

  57. Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 2006; 22: 719–729.

    CAS  Google Scholar 

  58. Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 1997; 88: 265–275.

    CAS  Google Scholar 

  59. Chen J, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell 1998; 2: 317–328.

    CAS  Google Scholar 

  60. Holloman WK . Unraveling the mechanism of BRCA2 in homologous recombination. Nat Struct Mol Biol 2011; 18: 748–754.

    CAS  Google Scholar 

  61. Jensen RB, Carreira A, Kowalczykowski SC . Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 2010; 467: 678–683.

    CAS  Google Scholar 

  62. Liu J, Doty T, Gibson B, Heyer W-D . Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol 2010; 17: 1260–1262.

    CAS  Google Scholar 

  63. Thorslund T, McIlwraith MJ, Compton SA, Lekomtsev S, Petronczki M, Griffith JD et al. The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol 2010; 17: 1263–1265.

    CAS  Google Scholar 

  64. Li ML, Greenberg RA . Links between genome integrity and BRCA1 tumor suppression. Trends Biochem Sci 2012; 37: 418–424.

    CAS  Google Scholar 

  65. Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 2007; 316: 1194–1198.

    CAS  Google Scholar 

  66. Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 2001; 105: 149–160.

    CAS  Google Scholar 

  67. Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R . The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem 1998; 273: 25388–25392.

    CAS  Google Scholar 

  68. Chen L, Nievera CJ, Lee AY-L, Wu X . Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem 2008; 283: 7713–7720.

    CAS  Google Scholar 

  69. Ruffner H, Verma IM . BRCA1 is a cell cycle-regulated nuclear phosphoprotein. Proc Natl Acad Sci USA 1997; 94: 7138–7143.

    CAS  Google Scholar 

  70. Deng C-X . BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 2006; 34: 1416–1426.

    CAS  Google Scholar 

  71. Venkitaraman AR . Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 2002; 108: 171–182.

    CAS  Google Scholar 

  72. Xu B, Kim St, Kastan MB . Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 2001; 21: 3445–3450.

    CAS  Google Scholar 

  73. Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC . BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 2002; 30: 285–289.

    Google Scholar 

  74. Hsu LC, White RL . BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci USA 1998; 95: 12983–12988.

    CAS  Google Scholar 

  75. Deng C-X . Roles of BRCA1 in centrosome duplication. Oncogene 2002; 21: 6222–6227.

    CAS  Google Scholar 

  76. Ruffner H, Jiang W, Craig AG, Hunter T, Verma IM . BRCA1 is phosphorylated at serine 1497 in vivo at a cyclin-dependent kinase 2 phosphorylation site. Mol Cell Biol 1999; 19: 4843–4854.

    CAS  Google Scholar 

  77. Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 1999; 3: 389–395.

    CAS  Google Scholar 

  78. Weaver Z, Montagna C, Xu X, Howard T, Gadina M, Brodie SG et al. Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 2002; 21: 5097–5107.

    CAS  Google Scholar 

  79. Chapman MS, Verma IM . Transcriptional activation by BRCA1. Nature 1996; 382: 678–679.

    CAS  Google Scholar 

  80. Monteiro AN, August A, Hanafusa H . Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc Natl Acad Sci USA 1996; 93: 13595–13599.

    CAS  Google Scholar 

  81. Hartman A-R, Ford JM . BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet 2002; 32: 180–184.

    CAS  Google Scholar 

  82. Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM et al. BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 2011; 477: 179–184.

    CAS  Google Scholar 

  83. Shakya R, Reid LJ, Reczek CR, Cole F, Egli D, Lin C-S et al. BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science 2011; 334: 525–528.

    CAS  Google Scholar 

  84. Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D, Fukuda M et al. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex Proc Natl Acad Sci USA 2003; 100: 5646–5651.

    CAS  Google Scholar 

  85. Drost R, Bouwman P, Rottenberg S, Boon U, Schut E, Klarenbeek S et al. BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell 2011; 20: 797–809.

    CAS  Google Scholar 

  86. Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM . Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci USA 2001; 98: 5134–5139.

    CAS  Google Scholar 

  87. Mallery DL, Vandenberg CJ, Hiom K . Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J 2002; 21: 6755–6762.

    CAS  Google Scholar 

  88. Shakya R, Szabolcs M, McCarthy E, Ospina E, Basso K, Nandula S et al. The basal-like mammary carcinomas induced by Brca1 or Bard1 inactivation implicate the BRCA1/BARD1 heterodimer in tumor suppression. Proc Natl Acad Sci USA 2008; 105: 7040–7045.

    CAS  Google Scholar 

  89. Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 1997; 90: 425–435.

    CAS  Google Scholar 

  90. Pathania S, Nguyen J, Hill SJ, Scully R, Adelmant GO, Marto JA et al. BRCA1 is required for postreplication repair after UV-induced DNA damage. Mol Cell 2011; 44: 235–251.

    CAS  Google Scholar 

  91. Birkbak NJ, Wang ZC, Kim J-Y, Eklund AC, Li Q, Tian R et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov 2012; 2: 366–375.

    CAS  Google Scholar 

  92. Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP . The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 2004; 96: 1659–1668.

    CAS  Google Scholar 

  93. Lafarge S, Sylvain V, Ferrara M, Bignon YJ . Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway. Oncogene 2001; 20: 6597–6606.

    CAS  Google Scholar 

  94. Quinn JE, Kennedy RD, Mullan PB, Gilmore PM, Carty M, Johnston PG et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res 2003; 63: 6221–6228.

    CAS  Google Scholar 

  95. Tassone P, Tagliaferri P, Perricelli A, Blotta S, Quaresima B, Martelli ML et al. BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells. Br J Cancer 2003; 88: 1285–1291.

    CAS  Google Scholar 

  96. Chabalier C, Lamare C, Racca C, Privat M, Valette A, Larminat F . BRCA1 downregulation leads to premature inactivation of spindle checkpoint and confers paclitaxel resistance. Cell Cycle 2006; 5: 1001–1007.

    CAS  Google Scholar 

  97. Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M et al. Response to neo-adjuvant chemotherapy in women with BRCA1-positive breast cancers. Breast Cancer Res Treat 2008; 108: 289–296.

    CAS  Google Scholar 

  98. Wysocki PJ, Korski K, Lamperska K, Zaluski J, Mackiewicz A . Primary resistance to docetaxel-based chemotherapy in metastatic breast cancer patients correlates with a high frequency of BRCA1 mutations. Med Sci Monit 2008; 14: SC7–10.

    CAS  Google Scholar 

  99. Kriege M, Jager A, Hooning MJ, Huijskens E, Blom J, van Deurzen CHM et al. The efficacy of taxane chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. Cancer 2012; 118: 899–907.

    CAS  Google Scholar 

  100. Rottenberg S, Vollebergh MA, de Hoon B, de Ronde J, Schouten PC, Kersbergen A et al. Impact of intertumoral heterogeneity on predicting chemotherapy response of BRCA1-deficient mammary tumors. Cancer Res 2012; 72: 2350–2361.

    CAS  Google Scholar 

  101. Boyd J, Sonoda Y, Federici MG, Bogomolniy F, Rhei E, Maresco DL et al. Clinicopathologic features of BRCA-linked and sporadic ovarian cancer. JAMA 2000; 283: 2260–2265.

    CAS  Google Scholar 

  102. Ben David Y, Chetrit A, Hirsh-Yechezkel G, Friedman E, Beck BD, Beller U et al. Effect of BRCA mutations on the length of survival in epithelial ovarian tumors. J Clin Oncol 2002; 20: 463–466.

    CAS  Google Scholar 

  103. Cass I, Baldwin RL, Varkey T, Moslehi R, Narod SA, Karlan BY . Improved survival in women with BRCA-associated ovarian carcinoma. Cancer 2003; 97: 2187–2195.

    CAS  Google Scholar 

  104. Chetrit A, Hirsh-Yechezkel G, Ben-David Y, Lubin F, Friedman E, Sadetzki S . Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer. J Clin Oncol 2008; 26: 20–25.

    Google Scholar 

  105. Deans AJ, West SC . DNA interstrand crosslink repair and cancer. Nat Rev Cancer 2011; 11: 467–480.

    CAS  Google Scholar 

  106. Piccart MJ, Lamb H, Vermorken JB . Current and future potential roles of the platinum drugs in the treatment of ovarian cancer. Ann Oncol 2001; 12: 1195–1203.

    CAS  Google Scholar 

  107. Rottenberg S, Nygren AOH, Pajic M, van Leeuwen FWB, van der Heijden I, van de Wetering K et al. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc Natl Acad Sci USA 2007; 104: 12117–12122.

    CAS  Google Scholar 

  108. Tassone P, Di Martino MT, Ventura M, Pietragalla A, Cucinotto I, Calimeri T et al. Loss of BRCA1 function increases the antitumor activity of cisplatin against human breast cancer xenografts in vivo. Cancer Biol Ther 2009; 8: 648–653.

    CAS  Google Scholar 

  109. Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 2010; 28: 375–379.

    CAS  Google Scholar 

  110. Byrski T, Huzarski T, Dent R, Gronwald J, Zuziak D, Cybulski C et al. Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat 2009; 115: 359–363.

    CAS  Google Scholar 

  111. Byrski T, Dent R, Blecharz P, Foszczynska-Kloda M, Gronwald J, Huzarski T et al. Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patients with BRCA1-positive metastatic breast cancer. Breast Cancer Res 2012; 14: R110.

    CAS  Google Scholar 

  112. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 2010; 28: 1145–1153.

    CAS  Google Scholar 

  113. Huang JC, Zamble DB, Reardon JT, Lippard SJ, Sancar A . HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc Natl Acad Sci USA 1994; 91: 10394–10398.

    CAS  Google Scholar 

  114. Zamble DB, Mu D, Reardon JT, Sancar A, Lippard SJ . Repair of cisplatin—DNA adducts by the mammalian excision nuclease. Biochemistry 1996; 35: 10004–10013.

    CAS  Google Scholar 

  115. Bunting SF, Callén E, Kozak ML, Kim JM, Wong N, López-Contreras AJ et al. BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol Cell 2012; 46: 125–135.

    CAS  Google Scholar 

  116. Evers B, Schut E, van der Burg E, Braumuller TM, Egan DA, Holstege H et al. A high-throughput pharmaceutical screen identifies compounds with specific toxicity against BRCA2-deficient tumors. Clin Cancer Res 2010; 16: 99–108.

    CAS  Google Scholar 

  117. Osher DJ, Kushner YB, Arseneau J, Foulkes WD . Melphalan as a treatment for BRCA-related ovarian carcinoma: can you teach an old drug new tricks? J Clin Pathol 2011; 64: 924–926.

    CAS  Google Scholar 

  118. Vollebergh MA, Lips EH, Nederlof PM, Wessels LFA, Schmidt MK, van Beers EH et al. An aCGH classifier derived from BRCA1-mutated breast cancer and benefit of high-dose platinum-based chemotherapy in HER2-negative breast cancer patients. Ann Oncol 2011; 22: 1561–1570.

    CAS  Google Scholar 

  119. Kaelin WG Jr. . The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 2005; 5: 689–698.

    CAS  Google Scholar 

  120. Murai J, Huang SN, Das BB, Renaud A, Zhang Y, Doroshow JH et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 2012; 72: 5588–5599.

    CAS  Google Scholar 

  121. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434: 913–917.

    CAS  Google Scholar 

  122. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434: 917–921.

    CAS  Google Scholar 

  123. Evers B, Drost R, Schut E, de Bruin M, van der Burg E, Derksen PWB et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res 2008; 14: 3916–3925.

    CAS  Google Scholar 

  124. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AOH, Zander SAL et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA 2008; 105: 17079–17084.

    CAS  Google Scholar 

  125. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361: 123–134.

    CAS  Google Scholar 

  126. Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 2007; 13: 2728–2737.

    CAS  Google Scholar 

  127. Penning TD, Zhu G-D, Gandhi VB, Gong J, Liu X, Shi Y et al. Discovery of the Poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem 2009; 52: 514–523.

    CAS  Google Scholar 

  128. Plummer R, Jones C, Middleton M, Wilson R, Evans J, Olsen A et al. Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 2008; 14: 7917–7923.

    CAS  Google Scholar 

  129. Jones P, Altamura S, Boueres J, Ferrigno F, Fonsi M, Giomini C et al. Discovery of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors. J Med Chem 2009; 52: 7170–7185.

    CAS  Google Scholar 

  130. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010; 376: 235–244.

    CAS  Google Scholar 

  131. Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010; 376: 245–251.

    CAS  Google Scholar 

  132. O’Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 2011; 364: 205–214.

    Google Scholar 

  133. Guha M . PARP inhibitors stumble in breast cancer. Nat Biotechnol 2011; 29: 373–374.

    CAS  Google Scholar 

  134. Liu X, Shi Y, Maag DX, Palma JP, Patterson MJ, Ellis PA et al. Iniparib nonselectively modifies cysteine-containing proteins in tumor cells and is not a bona fide PARP inhibitor. Clin Cancer Res 2012; 18: 510–523.

    CAS  Google Scholar 

  135. Patel AG, De Lorenzo SB, Flatten KS, Poirier GG, Kaufmann SH . Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro. Clin Cancer Res 2012; 18: 1655–1662.

    CAS  Google Scholar 

  136. Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK . The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 2000; 275: 23899–23903.

    CAS  Google Scholar 

  137. Ishida S, McCormick F, Smith-McCune K, Hanahan D . Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell 2010; 17: 574–583.

    CAS  Google Scholar 

  138. Rabik CA, Dolan ME . Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 2007; 33: 9–23.

    CAS  Google Scholar 

  139. Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 2010; 28: 2512–2519.

    CAS  Google Scholar 

  140. Bouwman P, Jonkers J . The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 2012; 12: 587–598.

    CAS  Google Scholar 

  141. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 2008; 451: 1111–1115.

    CAS  Google Scholar 

  142. Sakai W, Swisher EM, Jacquemont C, Chandramohan KV, Couch FJ, Langdon SP et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res 2009; 69: 6381–6386.

    CAS  Google Scholar 

  143. Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 2008; 451: 1116–1120.

    CAS  Google Scholar 

  144. Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T . Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res 2008; 68: 2581–2586.

    CAS  Google Scholar 

  145. Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai W et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol 2011; 29: 3008–3015.

    CAS  Google Scholar 

  146. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 2008; 359: 366–377.

    CAS  Google Scholar 

  147. Glover JNM . Insights into the molecular basis of human hereditary breast cancer from studies of the BRCA1 BRCT domain. Fam Cancer 2006; 5: 89–93.

    CAS  Google Scholar 

  148. Wang B . BRCA1 tumor suppressor network: focusing on its tail. Cell & Bioscience 2012; 2: 6.

    Google Scholar 

  149. Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 2010; 17: 688–695.

    CAS  Google Scholar 

  150. Bunting SF, Callén E, Wong N, Chen H-T, Polato F, Gunn A et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 2010; 141: 243–254.

    CAS  Google Scholar 

  151. Jaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L, Zander SA et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov 2013; 3: 68–81.

    CAS  Google Scholar 

  152. Pajic M, Kersbergen A, van Diepen F, Pfauth A, Jonkers J, Borst P et al. Tumor-initiating cells are not enriched in cisplatin-surviving BRCA1;p53-deficient mammary tumor cells in vivo. Cell Cycle 2010; 9: 3780–3791.

    CAS  Google Scholar 

  153. Shafee N, Smith CR, Wei S, Kim Y, Mills GB, Hortobagyi GN et al. Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res 2008; 68: 3243–3250.

    CAS  Google Scholar 

  154. Clark CC, Weitzel JN, O’Connor TR . Enhancement of synthetic lethality via combinations of ABT-888, a PARP inhibitor, and carboplatin in vitro and in vivo using BRCA1 and BRCA2 isogenic models. Mol Cancer Ther 2012; 11: 1948–1958.

    CAS  Google Scholar 

  155. Zander SAL, Kersbergen A, van der Burg E, de Water N, van Tellingen O, Gunnarsdottir S et al. Sensitivity and acquired resistance of BRCA1;p53-deficient mouse mammary tumors to the topoisomerase I inhibitor topotecan. Cancer Res 2010; 70: 1700–1710.

    CAS  Google Scholar 

  156. Chalmers AJ . The potential role and application of PARP inhibitors in cancer treatment. Br Med Bull 2009; 89: 23–40.

    CAS  Google Scholar 

  157. Altiok S, Batt D, Altiok N, Papautsky A, Downward J, Roberts TM et al. Heregulin induces phosphorylation of BRCA1 through phosphatidylinositol 3-Kinase/AKT in breast cancer cells. J Biol Chem 1999; 274: 32274–32278.

    CAS  Google Scholar 

  158. Ouchi T . BRCA1 phosphorylation: biological consequences. Cancer Biol Ther 2006; 5: 470–475.

    CAS  Google Scholar 

  159. Xiang T, Ohashi A, Huang Y, Pandita TK, Ludwig T, Powell SN et al. Negative regulation of AKT activation by BRCA1. Cancer Res 2008; 68: 10040–10044.

    CAS  Google Scholar 

  160. Xiang T, Jia Y, Sherris D, Li S, Wang H, Lu D et al. Targeting the Akt/mTOR pathway in Brca1-deficient cancers. Oncogene 2011; 30: 2443–2450.

    CAS  Google Scholar 

  161. Kimbung S, Biskup E, Johansson I, Aaltonen K, Ottosson-Wadlund A, Gruvberger-Saal S et al. Co-targeting of the PI3K pathway improves the response of BRCA1 deficient breast cancer cells to PARP1 inhibition. Cancer Letters [Internet] 2012; 319: 232–241.

    CAS  Google Scholar 

  162. Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmañà J et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast Cancer. Cancer Discov 2012; 2: 1048–1063.

    CAS  Google Scholar 

  163. Ibrahim YH, García-García C, Serra V, He L, Torres-Lockhart K, Prat A et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov 2012; 2: 1036–1047.

    CAS  Google Scholar 

  164. Deans AJ, Khanna KK, McNees CJ, Mercurio C, Heierhorst J, McArthur GA . Cyclin-dependent kinase 2 functions in normal DNA repair and is a therapeutic target in BRCA1-deficient cancers. Cancer Res 2006; 66: 8219–8226.

    CAS  Google Scholar 

  165. Jacquemont C, Taniguchi T . Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res 2007; 67: 7395–7405.

    CAS  Google Scholar 

  166. Dungey FA, Caldecott KW, Chalmers AJ . Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol Cancer Ther 2009; 8: 2243–2254.

    CAS  Google Scholar 

  167. Krawczyk PM, Eppink B, Essers J, Stap J, Rodermond H, Odijk H et al. Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci USA 2011; 108: 9851–9856.

    CAS  Google Scholar 

  168. Yang ES, Xia F . BRCA1 16 years later: DNA damage-induced BRCA1 shuttling. FEBS J 2010; 277: 3079–3085.

    CAS  Google Scholar 

  169. Li L, Wang H, Yang ES, Arteaga CL, Xia F . Erlotinib attenuates homologous recombinational repair of chromosomal breaks in human breast cancer cells. Cancer Res 2008; 68: 9141–9146.

    CAS  Google Scholar 

  170. Yang ES, Nowsheen S, Rahman MA, Cook RS, Xia F . Targeting BRCA1 localization to augment breast tumor sensitivity to poly(ADP-Ribose) polymerase inhibition. Cancer Res 2012; 72: 5547–5555.

    CAS  Google Scholar 

  171. Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 2011; 12: 852–861.

    CAS  Google Scholar 

  172. Kummar S, Ji J, Morgan R, Lenz H-J, Puhalla SL, Belani CP et al. A phase I study of veliparib in combination with metronomic cyclophosphamide in adults with refractory solid tumors and lymphomas. Clin Cancer Res 2012; 18: 1726–1734.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Peter Bouwman and Sven Rottenberg for helpful discussions and comments on the manuscript. This work was supported by grants from the European Union, the TI Center for Translational Molecular Medicine (CTMM), the Netherlands Organization for Scientific Research (NWO), the Cancer Systems Biology Center, the Cancer Genomics Centre Netherlands and the Dutch Cancer Society (KWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Jonkers.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drost, R., Jonkers, J. Opportunities and hurdles in the treatment of BRCA1-related breast cancer. Oncogene 33, 3753–3763 (2014). https://doi.org/10.1038/onc.2013.329

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.329

Keywords

This article is cited by

Search

Quick links