Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapeutic implications of activation of the host gene (Dleu2) promoter for miR-15a/16-1 in chronic lymphocytic leukemia

Abstract

Genetic lesions and other regulatory events lead to silencing of the 13q14 locus in a majority of chronic lymphocytic leukemia (CLL) patients. This locus encodes a pair of critical proapoptotic microRNAs, miR-15a/16-1. Decreased levels of miR-15a/16-1 are critical for the increased survival exhibited by CLL cells. Similarly, in a de novo murine model of CLL, the NZB strain, germline-encoded regulation of the syntenic region resulted in decreased miR-15a/16-1. In this paper, we have identified additional molecular mechanisms regulating miR-15a/16-1 levels and have shown that the transcription factor BSAP (B-cell-specific activator protein) directly interacts with Dleu2, the host gene containing the miR-15a/16-1 loci, and by negative regulation of the Dleu2 promoter, results in repression of miR-15a/16-1 expression. CLL patient B-cell expression levels of BSAP were increased compared with control sources of B cells. With the use of small interfering RNA-mediated repression, the levels of BSAP were decreased in vitro in the NZB-derived malignant B-1 cell line, LNC, and in ex vivo CLL patient peripheral blood mononuclear cells (PBMCs). BSAP knockdown led to an increase in the expression of miR-15a/16-1 and an increase in apoptosis, and a cell cycle arrest in both the cell line and patient PBMCs. Moreover, using Dleu2 promoter analysis by chromatin immunoprecipitation assay, we have shown that BSAP directly interacts with the Dleu2 promoter. Derepression of the Dleu2 promoter via inhibition of histone deacetylation combined with BSAP knockdown increased miR-15a/16-1 expression, and also increased malignant B-cell death. In summary, therapy targeting enhanced host gene Dleu2 transcription may augment CLL therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES . The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 2011; 117: 5019–5032.

    Article  CAS  Google Scholar 

  2. Piller G . Leukaemia—a brief historical review from ancient times to 1950. Br J Haematol 2001; 112: 282–292.

    Article  CAS  Google Scholar 

  3. Montserrat E . Further progress in CLL therapy. Blood 2008; 112: 924–925.

    Article  CAS  Google Scholar 

  4. Robertson LE, Huh YO, Butler JJ, Pugh WC, Hirsch-Ginsberg C, Stass S et al. Response assessment in chronic lymphocytic leukemia after fludarabine plus prednisone: clinical, pathologic, immunophenotypic, and molecular analysis. Blood 1992; 80: 29–36.

    CAS  Google Scholar 

  5. Bottcher S, Ritgen M, Fischer K, Stilgenbauer S, Busch RM, Fingerle-Rowson G et al. Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol 2012; 30: 980–988.

    Article  Google Scholar 

  6. Kasinski AL, Slack FJ . Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011; 11: 849–864.

    Article  CAS  Google Scholar 

  7. Kasar S, Salerno E, Yuan Y, Underbayev C, Vollenweider D, Laurindo MF et al. Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignancy in the NZB de novo mouse model of chronic lymphocytic leukemia. Genes Immun 2012; 13: 109–119.

    Article  CAS  Google Scholar 

  8. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  Google Scholar 

  9. Chang H, Li D, Zhuang L, Nie E, Bouman D, Stewart AK et al. Detection of chromosome 13q deletions and IgH translocations in patients with multiple myeloma by FISH: comparison with karyotype analysis. Leuk Lymphoma 2004; 45: 965–969.

    Article  CAS  Google Scholar 

  10. Chen L, Li J, Xu W, Qiu H, Zhu Y, Zhang Y et al. Molecular cytogenetic aberrations in patients with multiple myeloma studied by interphase fluorescence in situ hybridization. Exp Oncol 2007; 29: 116–120.

    CAS  Google Scholar 

  11. Flordal Thelander E, Ichimura K, Collins VP, Walsh SH, Barbany G, Hagberg A et al. Detailed assessment of copy number alterations revealing homozygous deletions in 1p and 13q in mantle cell lymphoma. Leuk Res 2007; 31: 1219–1230.

    Article  CAS  Google Scholar 

  12. Corcoran MM, Rasool O, Liu Y, Iyengar A, Grander D, Ibbotson RE et al. Detailed molecular delineation of 13q14.3 loss in B-cell chronic lymphocytic leukemia. Blood 1998; 91: 1382–1390.

    CAS  Google Scholar 

  13. Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S, Toniato E et al. Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2098–2104.

    Article  CAS  Google Scholar 

  14. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17: 28–40.

    Article  CAS  Google Scholar 

  15. Palamarchuk A, Efanov A, Nazaryan N, Santanam U, Alder H, Rassenti L et al. 13q14 Deletions in CLL involve cooperating tumor suppressors. Blood 2010; 115: 3916–3922.

    Article  CAS  Google Scholar 

  16. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A . Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14: 1902–1910.

    Article  CAS  Google Scholar 

  17. Salerno E, Yuan Y, Scaglione BJ, Marti G, Jankovic A, Mazzella F et al. The New Zealand black mouse as a model for the development and progression of chronic lymphocytic leukemia. Cytometry B 2010; 78 (Suppl 1): S98–S109.

    Article  Google Scholar 

  18. Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 2007; 109: 5079–5086.

    Article  CAS  Google Scholar 

  19. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353: 1793–1801.

    Article  CAS  Google Scholar 

  20. Salerno E, Scaglione BJ, Coffman FD, Brown BD, Baccarini A, Fernandes H et al. Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Mol Cancer Ther 2009; 8: 2684–2692.

    Article  CAS  Google Scholar 

  21. Chung EY, Dews M, Cozma D, Yu D, Wentzel EA, Chang TC et al. c-Myb oncoprotein is an essential target of the dleu2 tumor suppressor microRNA cluster. Cancer Biol Ther 2008; 7: 1758–1764.

    Article  CAS  Google Scholar 

  22. Medvedovic J, Ebert A, Tagoh H, Busslinger M . Pax5: a master regulator of B cell development and leukemogenesis. Adv Immunol 2011; 111: 179–206.

    Article  CAS  Google Scholar 

  23. O'Brien P, Morin P Jr., Ouellette RJ, Robichaud GA . The Pax-5 gene: a pluripotent regulator of B-cell differentiation and cancer disease. Cancer Res 2011; 71: 7345–7350.

    Article  CAS  Google Scholar 

  24. Firtina S, Sayitoglu M, Hatirnaz O, Erbilgin Y, Oztunc C, Cinar S et al. Evaluation of PAX5 gene in the early stages of leukemic B cells in the childhood B cell acute lymphoblastic leukemia. Leuk Res 2012; 36: 87–92.

    Article  CAS  Google Scholar 

  25. Robichaud GA, Perreault JP, Ouellette RJ . Development of an isoform-specific gene suppression system: the study of the human Pax-5B transcriptional element. Nucleic Acids Res 2008; 36: 4609–4620.

    Article  CAS  Google Scholar 

  26. Humphrey RW, Brockway-Lunardi LM, Bonk DT, Dohoney KM, Doroshow JH, Meech SJ et al. Opportunities and challenges in the development of experimental drug combinations for cancer. J Natl Cancer Inst 2011; 103: 1222–1226.

    Article  CAS  Google Scholar 

  27. Hanlon K, Rudin CE, Harries LW . Investigating the targets of MIR-15a and MIR-16-1 in patients with chronic lymphocytic leukemia (CLL). PLoS One 2009; 4: e7169.

    Article  Google Scholar 

  28. Hamada T, Yonetani N, Ueda C, Maesako Y, Akasaka H, Akasaka T et al. Expression of the PAX5/BSAP transcription factor in haematological tumour cells and further molecular characterization of the t(9;14) (p13;q32) translocation in B-cell non-Hodgkin's lymphoma. Br J Haematol 1998; 102: 691–700.

    Article  CAS  Google Scholar 

  29. Yu D, Allman D, Goldschmidt MH, Atchison ML, Monroe JG, Thomas-Tikhonenko A . Oscillation between B-lymphoid and myeloid lineages in Myc-induced hematopoietic tumors following spontaneous silencing/reactivation of the EBF/Pax5 pathway. Blood 2003; 101: 1950–1955.

    Article  CAS  Google Scholar 

  30. Scaglione BJ, Salerno E, Balan M, Coffman F, Landgraf P, Abbasi F et al. Murine models of chronic lymphocytic leukaemia: role of microRNA-16 in the New Zealand Black mouse model. Br J Haematol 2007; 139: 645–657.

    Article  CAS  Google Scholar 

  31. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  Google Scholar 

  32. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 2008; 105: 5166–5171.

    Article  CAS  Google Scholar 

  33. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.

    Article  CAS  Google Scholar 

  34. Zhao H, Kalota A, Jin S, Gewirtz AM . The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood 2009; 113: 505–516.

    Article  CAS  Google Scholar 

  35. Cobaleda C, Schebesta A, Delogu A, Busslinger M . Pax5: the guardian of B cell identity and function. Nat Immunol 2007; 8: 463–470.

    Article  CAS  Google Scholar 

  36. Crapoulet N, O’Brien P, Ouellette RJ, Robichaud GA . Coordinated expression of Pax-5 and FAK1 in metastasis. Anticancer Agents Med Chem 2011; 11: 643–649.

    Article  CAS  Google Scholar 

  37. Zhang M, Raveche ES . Apoptosis induction in fludarabine resistant malignant B-1 cells by G2–M cell cycle arrest. Oncol Rep 1998; 5: 23–30.

    CAS  Google Scholar 

  38. Chong SY, Zhang M, Lin YC, Coffman F, Garcia Z, Ponzio N et al. The growth-regulatory role of B-cell-specific activator protein in NZB malignant B-1 cells. Cancer Immunol Immunother 2001; 50: 41–50.

    Article  CAS  Google Scholar 

  39. Zhang M, Chong SY, Raveche ES . The role of B-cell-specific activator protein in the response of malignant B-1 cells to LPS. Exp Cell Res 2001; 264: 233–243.

    Article  CAS  Google Scholar 

  40. Baumann Kubetzko FB, Di Paolo C, Maag C, Meier R, Schafer BW, Betts DR et al. The PAX5 oncogene is expressed in N-type neuroblastoma cells and increases tumorigenicity of a S-type cell line. Carcinogenesis 2004; 25: 1839–1846.

    Article  CAS  Google Scholar 

  41. Proulx M, Cayer MP, Drouin M, Laroche A, Jung D . Overexpression of PAX5 induces apoptosis in multiple myeloma cells. Int J Hematol 2010; 92: 451–462.

    Article  CAS  Google Scholar 

  42. Krenacs L, Himmelmann AW, Quintanilla-Martinez L, Fest T, Riva A, Wellmann A et al. Transcription factor B-cell-specific activator protein (BSAP) is differentially expressed in B cells and in subsets of B-cell lymphomas. Blood 1998; 92: 1308–1316.

    CAS  Google Scholar 

  43. Poppe B, De Paepe P, Michaux L, Dastugue N, Bastard C, Herens C et al. PAX5/IGH rearrangement is a recurrent finding in a subset of aggressive B-NHL with complex chromosomal rearrangements. Genes Chromosomes Cancer 2005; 44: 218–223.

    Article  CAS  Google Scholar 

  44. Kanteti R, Nallasura V, Loganathan S, Tretiakova M, Kroll T, Krishnaswamy S et al. PAX5 is expressed in small-cell lung cancer and positively regulates c-Met transcription. Lab Invest 2009; 89: 301–314.

    Article  CAS  Google Scholar 

  45. Chung EY, Psathas JN, Yu D, Li Y, Weiss MJ, Thomas-Tikhonenko A . CD19 is a major B cell receptor-independent activator of MYC-driven B-lymphomagenesis. J Clin Invest 2012; 122: 2257–2266.

    Article  CAS  Google Scholar 

  46. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  Google Scholar 

  47. Zhang X, Chen X, Lin J, Lwin T, Wright G, Moscinski LC et al. Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene 2012; 31: 3002–3008.

    Article  CAS  Google Scholar 

  48. Wang JC, Kafeel MI, Avezbakiyev B, Chen C, Sun Y, Rathnasabapathy C et al. Histone deacetylase in chronic lymphocytic leukemia. Oncology 2011; 81: 325–329.

    Article  CAS  Google Scholar 

  49. Van Damme M, Crompot E, Meuleman N, Mineur P, Bron D, Lagneaux L et al. HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics 2012; 7: 1403–1412.

    Article  CAS  Google Scholar 

  50. Barneda-Zahonero B, Parra M . Histone deacetylases and cancer. Mol Oncol 2012; 6: 579–589.

    Article  CAS  Google Scholar 

  51. Khan O, La Thangue NB . HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol 2012; 90: 85–94.

    Article  CAS  Google Scholar 

  52. Ramalingam SS, Belani CP, Ruel C, Frankel P, Gitlitz B, Koczywas M et al. Phase II study of belinostat (PXD101), a histone deacetylase inhibitor, for second line therapy of advanced malignant pleural mesothelioma. J Thorac Oncol 2009; 4: 97–101.

    Article  Google Scholar 

  53. Stathis A, Hotte SJ, Chen EX, Hirte HW, Oza AM, Moretto P et al. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin's lymphomas. Clin Cancer Res 2011; 17: 1582–1590.

    Article  CAS  Google Scholar 

  54. Lucas DM, Alinari L, West DA, Davis ME, Edwards RB, Johnson AJ et al. The novel deacetylase inhibitor AR-42 demonstrates pre-clinical activity in B-cell malignancies in vitro and in vivo. PLoS One 2010; 5: e10941.

    Article  Google Scholar 

  55. El-Khoury V, Moussay E, Janji B, Palissot V, Aouali N, Brons NH et al. The histone deacetylase inhibitor MGCD0103 induces apoptosis in B-cell chronic lymphocytic leukemia cells through a mitochondria-mediated caspase activation cascade. Mol Cancer Ther 2010; 9: 1349–1360.

    Article  CAS  Google Scholar 

  56. Dubovsky JA, Wang D, Powers JJ, Berchmans E, Smith MA, Wright KL et al. Restoring the functional immunogenicity of chronic lymphocytic leukemia using epigenetic modifiers. Leuk Res 2011; 35: 394–404.

    Article  CAS  Google Scholar 

  57. Perez-Perarnau A, Coll-Mulet L, Rubio-Patino C, Iglesias-Serret D, Cosialls AM, Gonzalez-Girones DM et al. Analysis of apoptosis regulatory genes altered by histone deacetylase inhibitors in chronic lymphocytic leukemia cells. Epigenetics 2011; 6: 1228–1235.

    Article  CAS  Google Scholar 

  58. Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG et al. Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood 2012; 119: 1162–1172.

    Article  CAS  Google Scholar 

  59. Lanasa MC, Allgood SD, Slager SL, Dave SS, Love C, Marti GE et al. Immunophenotypic and gene expression analysis of monoclonal B-cell lymphocytosis shows biologic characteristics associated with good prognosis CLL. Leukemia 2011; 25: 1459–1466.

    Article  CAS  Google Scholar 

  60. Mertens D, Philippen A, Ruppel M, Allegra D, Bhattacharya N, Tschuch C et al. Chronic lymphocytic leukemia and 13q14: miRs and more. Leuk Lymphoma 2009; 50: 502–505.

    Article  CAS  Google Scholar 

  61. Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 2012; 44: 642–650.

    Article  CAS  Google Scholar 

  62. Peng B, Sherr DH, Mahboudi F, Hardin J, Wu YH, Sharer L et al. A cultured malignant B-1 line serves as a model for Richter's syndrome. J Immunol 1994; 153: 1869–1880.

    CAS  Google Scholar 

  63. Bougel S, Renaud S, Braunschweig R, Loukinov D, Morse HC 3rd, Bosman FT et al. PAX5 activates the transcription of the human telomerase reverse transcriptase gene in B cells. J Pathol 2010; 220: 87–96.

    Article  CAS  Google Scholar 

  64. Siegel D, Hussein M, Belani C, Robert F, Galanis E, Richon VM et al. Vorinostat in solid and hematologic malignancies. J Hematol Oncol 2009; 2: 31.

    Article  Google Scholar 

  65. Batish M, van den Bogaard P, Kramer FR, Tyagi S . Neuronal mRNAs travel singly into dendrites. Proc Natl Acad Sci USA 2012; 109: 4645–4650.

    Article  CAS  Google Scholar 

  66. Batish M, Raj A, Tyagi S . Single molecule imaging of RNA in situ. Methods Mol Biol 2011; 714: 3–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF/FDA/SIR No. 1238375 and NIH R01CA12926 (ESR). Early Independence Award # 1DP5OD012160-01 (MB). We thank the UMDNJ-NJMS Flow Cytometry Core for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Batish or E Raveche.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasar, S., Underbayev, C., Yuan, Y. et al. Therapeutic implications of activation of the host gene (Dleu2) promoter for miR-15a/16-1 in chronic lymphocytic leukemia. Oncogene 33, 3307–3315 (2014). https://doi.org/10.1038/onc.2013.291

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.291

Keywords

This article is cited by

Search

Quick links