Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Prolactin cooperates with loss of p53 to promote claudin-low mammary carcinomas

Abstract

TP53 is one of the most commonly mutated genes in cancer. In breast cancer, it is mutated in about 40% of primary clinical tumors and is associated with poor survival. The mammotrophic hormone, prolactin (PRL), and/or its receptor are also expressed in many breast cancers, and accumulating epidemiologic data link PRL to breast cancer development and progression. Like TP53 mutations, evidence for PRL activity is evident across several molecular cancer subtypes, and elevated PRL expression and loss of p53 have been observed in some of the same clinical tumors. In order to examine the interaction of these factors, we used genetically modified mouse models of mammary-specific p53 loss and local overexpression of PRL. We demonstrated that mammary PRL decreased the latency of tumors in the absence of p53, and increased the proportion of triple-negative claudin-low carcinomas, which display similarities to human clinical metaplastic carcinomas. Moreover, PRL/p53−/− carcinomas displayed higher rates of proliferation and more aggressive behavior. Transcripts associated with cell cycle progression, invasion and stromal reactivity were differentially expressed in carcinomas that developed in the presence of elevated PRL. PRL/p53−/− carcinomas also exhibited selectively altered expression of activating protein-1 components, including higher levels of c-Jun and FosL1, which can drive transcription of many of these genes and the epithelial–mesenchymal transition. The ability of PRL to promote claudin-low carcinomas demonstrates that PRL can influence this subset of triple-negative breast cancers, which may have been obscured by the relative infrequency of this cancer subtype. Our findings suggest novel therapeutic approaches, and provide a preclinical model to develop possible agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cancer Genome Atlas Network, Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  3. Donehower LA . Using mice to examine p53 functions in cancer, aging, and longevity. Cold Spring Harbor Persp Biol 2009; 1: a001081.

    Google Scholar 

  4. Jackson JG, Lozano G . The mutant p53 mouse as a pre-clinical model. Oncogene (e-pub ahead of print, 14 January 2013; doi:10.1038/onc.2012.610).

    Article  CAS  PubMed  Google Scholar 

  5. Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ et al. A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene 2000; 19: 1052–1058.

    Article  CAS  PubMed  Google Scholar 

  6. Herschkowitz JI, Zhao W, Zhang M, Usary J, Murrow G, Edwards D et al. Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci USA 2012; 109: 2778–2783.

    Article  CAS  PubMed  Google Scholar 

  7. Medina D, Kittrell FS, Shepard A, Contreras A, Rosen JM, Lydon J . Hormone dependence in premalignant mammary progression. Cancer Res 2003; 63: 1067–1072.

    CAS  PubMed  Google Scholar 

  8. Medina D, Kittrell FS, Hill J, Shepard A, Thordarson G, Brown P . Tamoxifen inhibition of estrogen receptor-alpha-negative mouse mammary tumorigenesis. Cancer Res 2005; 65: 3493–3496.

    Article  CAS  PubMed  Google Scholar 

  9. Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ . Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13: 13–28.

    Article  PubMed  Google Scholar 

  10. Tworoger SS, Hankinson SE . Prolactin and breast cancer etiology: an epidemiologic perspective. J Mammary Gland Biol Neoplasia 2008; 13: 41–53.

    Article  PubMed  Google Scholar 

  11. Ben Jonathan N, Liby K, McFarland M, Zinger M . Prolactin as an autocrine/paracrine growth factor in human cancer. Trends Endocrinol Metab 2002; 13: 245–250.

    Article  CAS  PubMed  Google Scholar 

  12. Clevenger CV, Plank TL . Prolactin as an autocrine/ paracrine factor in breast cancer. J Mammary Gland Biol Neoplasia 1997; 2: 59–68.

    Article  CAS  PubMed  Google Scholar 

  13. Ginsburg E, Vonderhaar BK . Prolactin synthesis and secretion by human breast cancer cells. Cancer Res 1995; 55: 2591–2595.

    CAS  PubMed  Google Scholar 

  14. Bhatavdekar JM, Patel DD, Shah NG, Vora HH, Suthar TP, Ghosh N et al. Prolactin as a local growth promoter in patients with breast cancer: GCRI experience. Eur J Surg Oncol 2000; 26: 540–547.

    Article  CAS  PubMed  Google Scholar 

  15. McHale K, Tomaszewski JE, Puthiyaveettil R, Livolsi VA, Clevenger CV . Altered expression of prolactin receptor-associated signaling proteins in human breast carcinoma. Mod Pathol 2008; 21: 565–571.

    Article  CAS  PubMed  Google Scholar 

  16. Howell SJ, Anderson E, Hunter T, Farnie G, Clarke RB . Prolactin receptor antagonism reduces the clonogenic capacity of breast cancer cells and potentiates doxorubicin and paclitaxel cytotoxicity. Breast Cancer Res 2008; 10: R68.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Holtkamp W, Nagel GA, Wander HE, Rauschecker HF, von Heyden D . Hyperprolactinemia is an indicator of progressive disease and poor prognosis in advanced breast cancer. Int J Cancer 1984; 34: 323–328.

    Article  CAS  PubMed  Google Scholar 

  18. Bhatavdekar JM, Shah NG, Balar DB, Patel DD, Bhaduri A, Trivedi SN et al. Plasma prolactin as an indicator of disease progression in advanced breast cancer. Cancer 1990; 65: 2028–2032.

    Article  CAS  PubMed  Google Scholar 

  19. Bhatavdekar JM, Patel DD, Shah NG, Vora HH, Suthar TP, Chikhlikar PR et al. Prognostic significance of immunohistochemically localized biomarkers in stage II and stage III breast cancer: a multivariate analysis. Ann Surg Oncol 2000; 7: 305–311.

    Article  CAS  PubMed  Google Scholar 

  20. Mujagic Z, Mujagic H . Importance of serum prolactin determination in metastatic breast cancer patients. Croat Med J 2004; 45: 176–180.

    PubMed  Google Scholar 

  21. Touraine P, Martini JF, Zafrani B, Durand JC, Labaille F, Malet C et al. Increased expression of prolactin receptor gene assessed by quantitative polymerase chain reaction in human breast tumors versus normal breast tissues. J Clin Endocrinol Metab 1998; 83: 667–674.

    Article  CAS  PubMed  Google Scholar 

  22. Meng JP, Tsai-Morris CH, Dufau ML . Human prolactin receptor variants in breast cancer: low ratio of short forms to the long-form human prolactin receptor associated with mammary carcinoma. Cancer Res 2004; 64: 5677–5682.

    Article  CAS  PubMed  Google Scholar 

  23. Swaminathan G, Varghese B, Fuchs SY . Regulation of prolactin receptor levels and activity in breast cancer. J Mammary Gland Biol Neoplasia 2008; 13: 81–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rose-Hellekant TA, Arendt LM, Schroeder MD, Gilchrist K, Sandgren EP, Schuler LA . Prolactin induces ERα-positive and ERα-negative mammary cancer in transgenic mice. Oncogene 2003; 22: 4664–4674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arendt LM, Rugowski DE, Grafwallner-Huseth TL, Garcia-Barchino MJ, Rui H, Schuler LA . Prolactin-induced mouse mammary carcinomas model estrogen resistant luminal breast cancer. Breast Cancer Res 2011; 13: R11–R25.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Arendt LM, Evans LC, Rugowski DE, Garcia-Barchino MJ, Rui H, Schuler LA . Ovarian hormones are not required for PRL-induced mammary tumorigenesis, but estrogen enhances neoplastic processes. J Endocrinol 2009; 203: 99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arendt LM, Grafwallner-Huseth TL, Schuler LA . Prolactin-growth factor crosstalk reduces mammary estrogen responsiveness despite elevated ERα expression. Am J Pathol 2009; 174: 1065–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ridgeway AG, McMenamin J, Leder P . P53 levels determine outcome during beta-catenin tumor initiation and metastasis in the mammary gland and male germ cells. Oncogene 2006; 25: 3518–3527.

    Article  CAS  PubMed  Google Scholar 

  29. Barcus CE, Keely PJ, Eliceiri KW, Schuler LA . Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem 2013; 288: 12722–12732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 2011; 178: 1221–1232.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 2010; 107: 15449–15454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cardiff RD . The pathology of EMT in mouse mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2010; 15: 225–233.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010; 12: R68.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 2009; 106: 13820–13825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 2009; 69: 4116–4124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sherr CJ . The INK4a/ARF network in tumour suppression. Nature Rev Mol Cell Biol 2001; 2: 731–737.

    Article  CAS  Google Scholar 

  37. Sharpless NE, Alson S, Chan S, Silver DP, Castrillon DH, DePinho RA . p16(INK4a) and p53 deficiency cooperate in tumorigenesis. Cancer Res 2002; 62: 2761–2765.

    CAS  PubMed  Google Scholar 

  38. Zhang S, Qian X, Redman C, Bliskovski V, Ramsay ES, Lowy DR et al. p16 INK4a gene promoter variation and differential binding of a repressor, the ras-responsive zinc-finger transcription factor, RREB. Oncogene 2003; 22: 2285–2295.

    Article  CAS  PubMed  Google Scholar 

  39. Sakamoto K, Triplett AA, Schuler LA, Wagner KU . Jak2 is required for the initiation but not maintenance of prolactin-induced mammary cancer. Oncogene 2010; 29: 5359–5369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Asher JM, O'Leary KA, Rugowski DE, Arendt LM, Schuler LA . Prolactin promotes mammary pathogenesis independently from cyclin D1. Am J Pathol 2012; 181: 294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oakes SR, Robertson FG, Kench JG, Gardiner-Garden M, Wand MP, Green JE et al. Loss of mammary epithelial prolactin receptor delays tumor formation by reducing cell proliferation in low-grade preinvasive lesions. Oncogene 2007; 26: 543–553.

    Article  CAS  PubMed  Google Scholar 

  42. Schroeder MD, Symowicz J, Schuler LA . Prolactin modulates cell cycle regulators in mammary tumor epithelial cells. Mol Endocrinol 2002; 16: 45–57.

    Article  CAS  PubMed  Google Scholar 

  43. Clevenger CV, Furth PA, Hankinson SE, Schuler LA . Role of prolactin in mammary carcinoma. Endocr Rev 2003; 24: 1–27.

    Article  CAS  PubMed  Google Scholar 

  44. Deryugina EI, Quigley JP . Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006; 25: 9–34.

    Article  CAS  PubMed  Google Scholar 

  45. Kohrmann A, Kammerer U, Kapp M, Dietl J, Anacker J . Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: new findings and review of the literature. BMC Cancer 2009; 9: 188.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nomura T, Katunuma N . Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. J Med Investigation 2005; 52: 1–9.

    Article  Google Scholar 

  47. Gass S, Harris J, Ormandy C, Brisken C . Using gene expression arrays to elucidate transcriptional profiles underlying prolactin function. J Mammary Gland Biol Neoplasia 2003; 8: 269–285.

    Article  PubMed  Google Scholar 

  48. Oakes SR, Naylor MJ, Asselin-Labat ML, Blazek KD, Gardiner-Garden M, Hilton HN et al. The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev 2008; 22: 581–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T et al. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol 2001; 155: 531–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peck AR, Witkiewicz AK, Liu C, Stringer GA, Klimowicz AC, Pequignot E et al. Loss of nuclear localized and tyrosine phosphorylated Stat5 in breast cancer predicts poor clinical outcome and increased risk of antiestrogen therapy failure. J Clin Oncol 2011; 29: 2448–2458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cotarla I, Ren SX, Zhang Y, Gehan E, Singh B, Furth PA . Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers. Int J Can 2004; 108: 665–671.

    Article  CAS  Google Scholar 

  52. Chakrabarti R, Hwang J, Andres Blanco M, Wei Y, Lukacisin M, Romano RA et al. Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol 2012; 14: 1212–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shaulian E, Karin M . AP-1 as a regulator of cell life and death1. Nat Cell Biol 2002; 4: E131–E136.

    Article  CAS  PubMed  Google Scholar 

  54. Eferl R, Wagner EF . AP-1: a double-edged sword in tumorigenesis. Nature Rev Cancer 2003; 3: 859–868.

    Article  CAS  Google Scholar 

  55. Ozanne BW, Spence HJ, McGarry LC, Hennigan RF . Transcription factors control invasion: AP-1 the first among equals. Oncogene 2007; 26: 1–10.

    Article  CAS  PubMed  Google Scholar 

  56. Lopez-Bergami P, Lau E, Ronai Z . Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer 2010; 10: 65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Matthews CP, Colburn NH, Young MR . AP-1 a target for cancer prevention. Curr Cancer Drug Targets 2007; 7: 317–324.

    Article  CAS  PubMed  Google Scholar 

  58. Shen Q, Uray IP, Li Y, Krisko TI, Strecker TE, Kim HT et al. The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene 2008; 27: 366–377.

    Article  CAS  PubMed  Google Scholar 

  59. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  60. Shen Q, Uray IP, Li Y, Zhang Y, Hill J, Xu XC et al. Targeting the activator protein 1 transcription factor for the prevention of estrogen receptor-negative mammary tumors. Cancer Prev Res (Phila Pa) 2008; 1: 45–55.

    Article  CAS  Google Scholar 

  61. Young MR, Colburn NH . Fra-1 a target for cancer prevention or intervention. Gene 2006; 379: 1–11.

    Article  CAS  PubMed  Google Scholar 

  62. Milde-Langosch K . The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 2005; 41: 2449–2461.

    Article  CAS  PubMed  Google Scholar 

  63. Johnston SR, Lu B, Scott GK, Kushner PJ, Smith IE, Dowsett M et al. Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumors with acquired tamoxifen resistance. Clin Cancer Res 1999; 5: 251–256.

    CAS  PubMed  Google Scholar 

  64. Zhou Y, Yau C, Gray JW, Chew K, Dairkee SH, Moore DH et al. Enhanced NF kappa B and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer 2007; 7: 59.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gutzman JH, Rugowski DE, Schroeder MD, Watters JJ, Schuler LA . Multiple kinase cascades mediate prolactin signals to activating protein-1 in breast cancer cells. Mol Endocrinol 2004; 18: 3064–3075.

    Article  CAS  PubMed  Google Scholar 

  66. Gutzman JH, Rugowski DE, Nikolai SE, Schuler LA . Stat5 activation inhibits prolactin-induced AP-1 activity: distinct prolactin initiated signals in tumorigenesis dependent on cell context. Oncogene 2007; 26: 6341–6348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shen Q, Zhang Y, Uray IP, Hill JL, Kim HT, Lu C et al. The AP-1 transcription factor regulates postnatal mammary gland development. Dev Biol 2006; 295: 589–603.

    Article  CAS  PubMed  Google Scholar 

  68. Ameyar-Zazoua M, Wisniewska MB, Bakiri L, Wagner EF, Yaniv M, Weitzman JB . AP-1 dimers regulate transcription of the p14/ p19 ARF tumor suppressor gene. Oncogene 2005; 24: 2298–2306.

    Article  CAS  PubMed  Google Scholar 

  69. Passegue E, Wagner EF . JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J 2000; 19: 2969–2979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vleugel MM, Greijer AE, Bos R, van der Wall E, van Diest PJ . c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum Pathol 2006; 37: 668–674.

    Article  CAS  PubMed  Google Scholar 

  71. Ghosh AK . Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp Biol Med (Maywood) 2002; 227: 301–314.

    Article  CAS  Google Scholar 

  72. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER et al. Control of mammary stem cell function by steroid hormone signalling. Nature 2010; 465: 798–802.

    Article  CAS  PubMed  Google Scholar 

  73. Hovey RC, Trott JF, Ginsburg E, Goldhar A, Sasaki MM, Fountain SJ, et al. Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland. Dev Dyn 2001; 222: 192–205.

    Article  CAS  PubMed  Google Scholar 

  74. Camarillo IG, Thordarson G, Moffat JG, Van Horn KM, Binart N, Kelly PA et al. Prolactin receptor expression in the epithelia and stroma of the rat mammary gland. J Endocrinol 2001; 171: 85–95.

    Article  CAS  PubMed  Google Scholar 

  75. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4: 1–7.

    Article  CAS  PubMed  Google Scholar 

  76. Hasen NS, O'Leary KA, Auger AP, Schuler LA . Social isolation reduces mammary development, tumor incidence and expression of epigenetic regulators in wild type and p53-heterozygotic mice. Cancer Prev Res 2010; 3: 620–629.

    Article  CAS  Google Scholar 

  77. Medina D . The mammary gland: a unique organ for the study of development and tumorigenesis. J Mammary Gland Biol Neoplasia 1996; 1: 5–19.

    Article  CAS  PubMed  Google Scholar 

  78. Montes GS, Junqueira LC . The use of the Picrosirius-polarization method for the study of the biopathology of collagen. Memorias do Instituto Oswaldo Cruz 1991; 86 (Suppl 3): 1–11.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the assistance of William Mulligan and Craig Barcus with the collagen imaging. This work was supported in part by CDMRP W81XWH-06-1-0647 (KAO), NIH R01CA157675 and funds from the Department of Comparative Biosciences (LAS) and UWCCC Core Grant P30 CA014520 (RS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L A Schuler.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Leary, K., Rugowski, D., Sullivan, R. et al. Prolactin cooperates with loss of p53 to promote claudin-low mammary carcinomas. Oncogene 33, 3075–3082 (2014). https://doi.org/10.1038/onc.2013.278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.278

Keywords

This article is cited by

Search

Quick links