Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Self-reinforcing loop of amphiregulin and Y-box binding protein-1 contributes to poor outcomes in ovarian cancer

Abstract

The Y-box binding protein-1 (YB-1) transcription factor is associated with unfavorable clinical outcomes. However, the mechanisms underlying this association remain to be fully elucidated. We demonstrate that YB-1 phosphorylation, indicative of YB-1 activation, is a powerful marker of outcomes for ovarian cancer patients. In ovarian cancer, YB-1 phosphorylation is induced by activation of the lysophosphatidic acid (LPA) receptor (LPAR) via SRC-dependent transactivation of the epidermal growth factor receptor (EGFR) that is coupled to MAPK/p90 ribosomal S6 kinase (p90RSK), but not phosphatidylinositol 3-kinase (PI3K)/AKT signaling. Activation of the LPAR/SRC/EGFR/MAPK/p90RSK/YB-1 axis leads to production of the EGFR ligand amphiregulin (AREG). AREG induces ongoing YB-1 phosphorylation as well as YB-1-dependent AREG expression, thus constituting an AREG/YB-1 self-reinforcing loop. Disruption of transactivation of the EGFR and the downstream self-reinforcing loop decreases invasiveness of ovarian cancer cells in vitro and limits ovarian cancer growth in xenograft models. These findings established the regulation and significance of YB-1 phosphorylation, therefore further exploration of this signaling axis as a therapeutic avenue in ovarian cancer is warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

AREG:

Amphiregulin

EGFR:

Epidermal growth factor receptor

GPCR:

G-protein-coupled receptor

HER:

human epidermal growth factor receptor

IGF-1:

insulin-like growth factor 1

IGF1R:

insulin-like growth factor 1 receptor

LPA:

lysophosphatidic acid

LPAR:

lysophosphatidic acid receptor

p90RSK:

p90 ribosomal S6 kinase

PI3K:

phosphatidylinositol 3-kinase

RPPA:

reverse phase protein array

TCGA:

The Cancer Genome Atlas

TGFα:

transforming growth factor-α

YB-1:

Y-box binding protein-1

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11–30.

    Article  Google Scholar 

  2. Clarke-Pearson DL . Clinical practice. Screening for ovarian cancer. N Engl J Med 2009; 361: 170–177.

    Article  CAS  Google Scholar 

  3. Cancer Genome Atlas Research N, Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  4. Chetrit A, Hirsh-Yechezkel G, Ben-David Y, Lubin F, Friedman E, Sadetzki S . Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer. J Clin Oncol 2008; 26: 20–25.

    Article  Google Scholar 

  5. Jones S, Wang TL, Kurman RJ, Nakayama K, Velculescu VE, Vogelstein B et al. Low-grade serous carcinomas of the ovary contain very few point mutations. J Pathol 2012; 226: 413–420.

    Article  CAS  Google Scholar 

  6. Okita M, Gaudette DC, Mills GB, Holub BJ . Elevated levels and altered fatty acid composition of plasma lysophosphatidylcholine (lysoPC) in ovarian cancer patients. Int J Cancer 1997; 71: 31–34.

    Article  CAS  Google Scholar 

  7. Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A et al. Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clin Cancer Res 1995; 1: 1223–1232.

    CAS  Google Scholar 

  8. Tabchy A, Tigyi G, Mills GB . Location, location, location: a crystal-clear view of autotaxin saturating LPA receptors. Nat Struct Mol Biol 2011; 18: 117–118.

    Article  CAS  Google Scholar 

  9. Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K et al. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 2002; 158: 227–233.

    Article  CAS  Google Scholar 

  10. Mills GB, Moolenaar WH . The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 2003; 3: 582–591.

    Article  CAS  Google Scholar 

  11. Yu S, Murph MM, Lu Y, Liu S, Hall HS, Liu J et al. Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst 2008; 100: 1630–1642.

    Article  CAS  Google Scholar 

  12. Lasham A, Samuel W, Cao H, Patel R, Mehta R, Stern JL et al. YB-1, the E2F pathway, and regulation of tumor cell growth. J Natl Cancer Inst 2012; 104: 133–146.

    Article  CAS  Google Scholar 

  13. Basaki Y, Hosoi F, Oda Y, Fotovati A, Maruyama Y, Oie S et al. Akt-dependent nuclear localization of Y-box-binding protein 1 in acquisition of malignant characteristics by human ovarian cancer cells. Oncogene 2007; 26: 2736–2746.

    Article  CAS  Google Scholar 

  14. Kamura T, Yahata H, Amada S, Ogawa S, Sonoda T, Kobayashi H et al. Is nuclear expression of Y box-binding protein-1 a new prognostic factor in ovarian serous adenocarcinoma? Cancer 1999; 85: 2450–2454.

    Article  CAS  Google Scholar 

  15. Yahata H, Kobayashi H, Kamura T, Amada S, Hirakawa T, Kohno K et al. Increased nuclear localization of transcription factor YB-1 in acquired cisplatin-resistant ovarian cancer. J Cancer Res Clin Oncol 2002; 128: 621–626.

    Article  CAS  Google Scholar 

  16. Stratford AL, Fry CJ, Desilets C, Davies AH, Cho YY, Li Y et al. Y-box binding protein-1 serine 102 is a downstream target of p90 ribosomal S6 kinase in basal-like breast cancer cells. Breast Cancer Res 2008; 10: R99.

    Article  Google Scholar 

  17. Sutherland BW, Kucab J, Wu J, Lee C, Cheang MC, Yorida E et al. Akt phosphorylates the Y-box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells. Oncogene 2005; 24: 4281–4292.

    Article  CAS  Google Scholar 

  18. Berquin IM, Pang B, Dziubinski ML, Scott LM, Chen YQ, Nolan GP et al. Y-box-binding protein 1 confers EGF independence to human mammary epithelial cells. Oncogene 2005; 24: 3177–3186.

    Article  CAS  Google Scholar 

  19. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 2008; 14: 5198–5208.

    Article  CAS  Google Scholar 

  20. Eder AM, Sasagawa T, Mao M, Aoki J, Mills GB . Constitutive and lysophosphatidic acid (LPA)-induced LPA production: role of phospholipase D and phospholipase A2 . Clin Cancer Res 2000; 6: 2482–2491.

    CAS  Google Scholar 

  21. Fang X, Yu S, Bast RC, Liu S, Xu HJ, Hu SX et al. Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J Biol Chem 2004; 279: 9653–9661.

    Article  CAS  Google Scholar 

  22. Fang X, Yu S, Eder A, Mao M, Bast RC Jr., Boyd D et al. Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene 1999; 18: 6635–6640.

    Article  CAS  Google Scholar 

  23. Lu Y, Muller M, Smith D, Dutta B, Komurov K, Iadevaia S et al. Kinome siRNA-phosphoproteomic screen identifies networks regulating AKT signaling. Oncogene 2011; 30: 4567–4577.

    Article  CAS  Google Scholar 

  24. Jing J, Greshock J, Holbrook JD, Gilmartin A, Zhang X, McNeil E et al. Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212. Mol Cancer Ther 2012; 11: 720–729.

    Article  CAS  Google Scholar 

  25. Smith JA, Poteet-Smith CE, Xu Y, Errington TM, Hecht SM, Lannigan DA . Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res 2005; 65: 1027–1034.

    Article  CAS  Google Scholar 

  26. Rhodes N, Heerding DA, Duckett DR, Eberwein DJ, Knick VB, Lansing TJ et al. Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res 2008; 68: 2366–2374.

    Article  CAS  Google Scholar 

  27. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 2010; 9: 1956–1967.

    Article  CAS  Google Scholar 

  28. Cherrin C, Haskell K, Howell B, Jones R, Leander K, Robinson R et al. An allosteric Akt inhibitor effectively blocks Akt signaling and tumor growth with only transient effects on glucose and insulin levels in vivo. Cancer Biol Ther 2010; 9: 493–503.

    Article  CAS  Google Scholar 

  29. Ericson K, Gan C, Cheong I, Rago C, Samuels Y, Velculescu VE et al. Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci USA 2010; 107: 2598–2603.

    Article  CAS  Google Scholar 

  30. Andreev J, Galisteo ML, Kranenburg O, Logan SK, Chiu ES, Okigaki M et al. Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J Biol Chem 2001; 276: 20130–20135.

    Article  CAS  Google Scholar 

  31. Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 2002; 62: 5749–5754.

    CAS  Google Scholar 

  32. Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 2001; 1: 85–94.

    CAS  Google Scholar 

  33. Talavera A, Friemann R, Gomez-Puerta S, Martinez-Fleites C, Garrido G, Rabasa A et al. Nimotuzumab, an antitumor antibody that targets the epidermal growth factor receptor, blocks ligand binding while permitting the active receptor conformation. Cancer Res 2009; 69: 5851–5859.

    Article  CAS  Google Scholar 

  34. Snider AJ, Zhang Z, Xie Y, Meier KE . Epidermal growth factor increases lysophosphatidic acid production in human ovarian cancer cells: roles for phospholipase D2 and receptor transactivation. Am J Physiol Cell Physiol 2010; 298: C163–C170.

    Article  CAS  Google Scholar 

  35. Ohta H, Sato K, Murata N, Damirin A, Malchinkhuu E, Kon J et al. Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol 2003; 64: 994–1005.

    Article  CAS  Google Scholar 

  36. Tice DA, Biscardi JS, Nickles AL, Parsons SJ . Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci USA 1999; 96: 1415–1420.

    Article  CAS  Google Scholar 

  37. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K et al. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 2004; 47: 6658–6661.

    Article  CAS  Google Scholar 

  38. Zhang Q, Thomas SM, Lui VW, Xi S, Siegfried JM, Fan H et al. Phosphorylation of TNF-α converting enzyme by gastrin-releasing peptide induces amphiregulin release and EGF receptor activation. Proc Natl Acad Sci USA 2006; 103: 6901–6906.

    Article  CAS  Google Scholar 

  39. Bergmann S, Royer-Pokora B, Fietze E, Jurchott K, Hildebrandt B, Trost D et al. YB-1 provokes breast cancer through the induction of chromosomal instability that emerges from mitotic failure and centrosome amplification. Cancer Res 2005; 65: 4078–4087.

    Article  CAS  Google Scholar 

  40. Evdokimova V, Tognon C, Ng T, Ruzanov P, Melnyk N, Fink D et al. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell 2009; 15: 402–415.

    Article  CAS  Google Scholar 

  41. Jurchott K, Kuban RJ, Krech T, Bluthgen N, Stein U, Walther W et al. Identification of Y-box binding protein 1 as a core regulator of MEK/ERK pathway-dependent gene signatures in colorectal cancer cells. PLoS Genet 2010; 6: e1001231.

    Article  Google Scholar 

  42. Stratford AL, Reipas K, Hu K, Fotovati A, Brough R, Frankum J et al. Targeting p90 ribosomal S6 kinase eliminates tumor-initiating cells by inactivating Y-box binding protein-1 in triple-negative breast cancers. Stem Cells 2012; 30: 1338–1348.

    Article  CAS  Google Scholar 

  43. Wu J, Lee C, Yokom D, Jiang H, Cheang MC, Yorida E et al. Disruption of the Y-box binding protein-1 results in suppression of the epidermal growth factor receptor and HER-2. Cancer Res 2006; 66: 4872–4879.

    Article  CAS  Google Scholar 

  44. Berquin IM, Dziubinski ML, Nolan GP, Ethier SP . A functional screen for genes inducing epidermal growth factor autonomy of human mammary epithelial cells confirms the role of amphiregulin. Oncogene 2001; 20: 4019–4028.

    Article  CAS  Google Scholar 

  45. Normanno N, Selvam MP, Qi CF, Saeki T, Johnson G, Kim N et al. Amphiregulin as an autocrine growth factor for c-Ha-ras- and c-erbB-2-transformed human mammary epithelial cells. Proc Natl Acad Sci USA 1994; 91: 2790–2794.

    Article  CAS  Google Scholar 

  46. Rodland KD, Bollinger N, Ippolito D, Opresko LK, Coffey RJ, Zangar R et al. Multiple mechanisms are responsible for transactivation of the epidermal growth factor receptor in mammary epithelial cells. J Biol Chem 2008; 283: 31477–31487.

    Article  CAS  Google Scholar 

  47. Cook SJ, McCormick F . Kinetic and biochemical correlation between sustained p44ERK1 (44 kDa extracellular signal-regulated kinase 1) activation and lysophosphatidic acid-stimulated DNA synthesis in Rat-1 cells. Biochem J 1996; 320 (Pt 1): 237–245.

    CAS  Google Scholar 

  48. Boerner JL, Biscardi JS, Silva CM, Parsons SJ . Transactivating agonists of the EGF receptor require Tyr 845 phosphorylation for induction of DNA synthesis. Mol Carcinog 2005; 44: 262–273.

    Article  CAS  Google Scholar 

  49. Jeong KJ, Cho KH, Panupinthu N, Kim H, Kang J, Park CG et al. EGFR mediates LPA-induced proteolytic enzyme expression and ovarian cancer invasion: inhibition by resveratrol. Mol Oncol 2013; 7: 121–129.

    Article  CAS  Google Scholar 

  50. Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F et al. A module of negative feedback regulators defines growth factor signaling. Nat Genet 2007; 39: 503–512.

    Article  CAS  Google Scholar 

  51. Panupinthu N, Lee HY, Mills GB . Lysophosphatidic acid production and action: critical new players in breast cancer initiation and progression. Br J Cancer 2010; 102: 941–946.

    Article  CAS  Google Scholar 

  52. Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL . Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 2009; 28: 3801–3813.

    Article  CAS  Google Scholar 

  53. Zhang Q, Bhola NE, Lui VW, Siwak DR, Thomas SM, Gubish CT et al. Antitumor mechanisms of combined gastrin-releasing peptide receptor and epidermal growth factor receptor targeting in head and neck cancer. Mol Cancer Ther 2007; 6: 1414–1424.

    Article  CAS  Google Scholar 

  54. Siwak DR, Carey M, Hennessy BT, Nguyen CT, McGahren Murray MJ, Nolden L et al. Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges. J Oncol 2010; 2010: 568938.

    Article  Google Scholar 

  55. Busser B, Sancey L, Josserand V, Niang C, Favrot MC, Coll JL et al. Amphiregulin promotes BAX inhibition and resistance to gefitinib in non-small-cell lung cancers. Mol Ther 2010; 18: 528–535.

    Article  CAS  Google Scholar 

  56. Law JH, Li Y, To K, Wang M, Astanehe A, Lambie K et al. Molecular decoy to the Y-box binding protein-1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability. PLoS One 2010; 5: e12661.

    Article  Google Scholar 

  57. Zhang L, Wei Q, Mao L, Liu W, Mills GB, Coombes K . Serial dilution curve: a new method for analysis of reverse phase protein array data. Bioinformatics 2009; 25: 650–654.

    Article  Google Scholar 

  58. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Meng Gao and Zhiyong Ding at MD Anderson Cancer Center for authenticating the AKT1/AKT2 knockout cell lines. This work was supported by NIH grants R01CA92160 and P01CA099031 (to G.B.M.), and R01CA098372 (to J.R.G.), the Breast Cancer Research Foundation (to G.B.M.), the National Research Foundation of Korea 2011-0015761 (to H.Y.L.), Canadian Institutes of Health Research (to S.E.D.), the SPORE in head-and-neck cancer P50CA197190 (to J.R.G.), the American Cancer Society (to J.R.G.) and CCSG core grant CA16672 (to MD Anderson Cancer Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Panupinthu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panupinthu, N., Yu, S., Zhang, D. et al. Self-reinforcing loop of amphiregulin and Y-box binding protein-1 contributes to poor outcomes in ovarian cancer. Oncogene 33, 2846–2856 (2014). https://doi.org/10.1038/onc.2013.259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.259

Keywords

This article is cited by

Search

Quick links