Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Histone deacetylase 5 blocks neuroblastoma cell differentiation by interacting with N-Myc

Abstract

The N-Myc oncoprotein induces neuroblastoma, which arises from undifferentiated neuroblasts in the sympathetic nervous system, by modulating gene and protein expression and consequently causing cell differentiation block and cell proliferation. The class IIa histone deacetylase 5 (HDAC5) represses gene transcription, and blocks myoblast, osteoblast and leukemia cell differentiation. Here we showed that N-Myc upregulated HDAC5 expression in neuroblastoma cells. Conversely, HDAC5 repressed the ubiquitin–protein ligase NEDD4 gene expression, increased Aurora A gene expression and consequently upregulated N-Myc protein expression. Genome-wide gene expression analysis and protein co-immunoprecipitation assays revealed that HDAC5 and N-Myc repressed the expression of a common subset of genes by forming a protein complex, whereas HDAC5 and the class III HDAC SIRT2 independently repressed the expression of another common subset of genes without forming a protein complex. Moreover, HDAC5 blocked differentiation and induced proliferation in neuroblastoma cells. Taken together, our data identify HDAC5 as a novel co-factor in N-Myc oncogenesis, and provide the evidence for the potential application of HDAC5 inhibitors in the therapy of N-Myc-induced neuroblastoma and potentially other c-Myc-induced malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Brodeur GM . Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003; 3: 203–216.

    Article  CAS  PubMed  Google Scholar 

  2. Maris JM, Hogarty MD, Bagatell R, Cohn SL . Neuroblastoma. Lancet 2007; 369: 2106–2120.

    Article  CAS  PubMed  Google Scholar 

  3. Gustafson WC, Weiss WA . Myc proteins as therapeutic targets. Oncogene 2010; 29: 1249–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. Genomic targets of the human c-myc protein. Genes Dev 2003; 17: 1115–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patel JH, Loboda AP, Showe MK, Showe LC, McMahon SB . Analysis of genomic targets reveals complex functions of myc. Nat Rev Cancer 2004; 4: 562–568.

    Article  CAS  PubMed  Google Scholar 

  6. Pelengaris S, Khan M, Evan G . C-myc: more than just a matter of life and death. Nat Rev Cancer 2002; 2: 764–776.

    Article  CAS  PubMed  Google Scholar 

  7. Eilers M, Eisenman RN . Myc's broad reach. Genes Dev 2008; 22: 2755–2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Riggelen J, Yetil A, Felsher DW . Myc as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 2010; 10: 301–309.

    Article  CAS  PubMed  Google Scholar 

  9. Cole MD, Cowling VH . Transcription-independent functions of myc: regulation of translation and DNA replication. Nat Rev Mol Cell Biol 2008; 9: 810–815.

    Article  CAS  PubMed  Google Scholar 

  10. Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN et al. The fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-myc protein degradation. Proc Natl Acad Sci USA 2004; 101: 9085–9090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N et al. Stabilization of n-myc is a critical function of aurora a in human neuroblastoma. Cancer Cell 2009; 15: 67–78.

    Article  CAS  PubMed  Google Scholar 

  12. Liu PY, Xu N, Malyukova A, Scarlett CJ, Sun YT, Zhang XD et al. The histone deacetylase sirt2 stabilizes myc oncoproteins. Cell Death Differ 2013; 20: 503–514.

    Article  CAS  PubMed  Google Scholar 

  13. Bolden JE, Peart MJ, Johnstone RW . Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 769–784.

    Article  CAS  PubMed  Google Scholar 

  14. McKinsey TA, Zhang CL, Lu J, Olson EN . Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 2000; 408: 106–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Renthal W, Maze I, Krishnan V, Covington HE 3rd, Xiao G, Kumar A et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 2007; 56: 517–529.

    Article  CAS  PubMed  Google Scholar 

  16. Long X, Creemers EE, Wang DZ, Olson EN, Miano JM . Myocardin is a bifunctional switch for smooth versus skeletal muscle differentiation. Proc Natl Acad Sci USA 2007; 104: 16570–16575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Milde T, Oehme I, Korshunov A, Kopp-Schneider A, Remke M, Northcott P et al. Hdac5 and hdac9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res 2010; 16: 3240–3252.

    Article  CAS  PubMed  Google Scholar 

  18. Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A et al. Altered interaction of hdac5 with gata-1 during mel cell differentiation. Oncogene 2003; 22: 9176–9184.

    Article  CAS  PubMed  Google Scholar 

  19. Peixoto P, Castronovo V, Matheus N, Polese C, Peulen O, Gonzalez A et al. Hdac5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell Death Differ 2012; 19: 1239–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci 2004; 7: 1003–1009.

    Article  CAS  PubMed  Google Scholar 

  21. Manji SS, Sorensen BS, Klockars T, Lam T, Hutchison W, Dahl HH . Molecular characterization and expression of maternally expressed gene 3 (meg3/gtl2) rna in the mouse inner ear. J Neurosci Res 2006; 83: 181–190.

    Article  CAS  PubMed  Google Scholar 

  22. Silvagno F, Guarnieri V, Capizzi A, Pescarmona GP . Synergistic effect of retinoic acid and dehydroepiandrosterone on differentiation of human neuroblastoma cells. FEBS Lett 2002; 532: 153–158.

    Article  CAS  PubMed  Google Scholar 

  23. Summerhill EM, Wood K, Fishman MC . Regulation of tyrosine hydroxylase gene expression during differentiation of neuroblastoma cells. Brain Res 1987; 388: 99–103.

    Article  CAS  PubMed  Google Scholar 

  24. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-myc. Cell 2012; 151: 56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W et al. C-myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012; 151: 68–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao X, Heng JI, Guardavaccaro D, Jiang R, Pagano M, Guillemot F et al. The hect-domain ubiquitin ligase huwe1 controls neural differentiation and proliferation by destabilizing the n-myc oncoprotein. Nat Cell Biol 2008; 10: 643–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu T, Tee AEL, Porro A, Smith SA, Dwarte T, Liu PY et al. Activation of tissue transglutaminase transcription by histone deacetylase inhibition as a therapeutic approach for myc oncogenesis. Proc Natl Acad Sci 2007; 104: 18682–18687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marshall GM, Gherardi S, Xu N, Neiron Z, Trahair T, Scarlett CJ et al. Transcriptional upregulation of histone deacetylase 2 promotes myc-induced oncogenic effects. Oncogene 2010; 29: 5957–5968.

    Article  CAS  PubMed  Google Scholar 

  29. Grozinger CM, Hassig CA, Schreiber SL . Three proteins define a class of human histone deacetylases related to yeast hda1p. Proc Natl Acad Sci USA 1999; 96: 4868–4873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA . Nuclear receptor corepressors partner with class ii histone deacetylases in a sin3-independent repression pathway. Genes Dev 2000; 14: 45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kao HY, Downes M, Ordentlich P, Evans RM . Isolation of a novel histone deacetylase reveals that class i and class ii deacetylases promote smrt-mediated repression. Genes Dev 2000; 14: 55–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou X, Richon VM, Rifkind RA, Marks PA . Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc Natl Acad Sci USA 2000; 97: 1056–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S . Mhda1/hdac5 histone deacetylase interacts with and represses mef2a transcriptional activity. J Biol Chem 2000; 275: 15594–15599.

    Article  CAS  PubMed  Google Scholar 

  34. Martin M, Kettmann R, Dequiedt F . Class iia histone deacetylases: regulating the regulators. Oncogene 2007; 26: 5450–5467.

    Article  CAS  PubMed  Google Scholar 

  35. Kang JS, Alliston T, Delston R, Derynck R . Repression of runx2 function by tgf-beta through recruitment of class ii histone deacetylases by smad3. EMBO J 2005; 24: 2543–2555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marshall GM, Liu PY, Gherardi S, Scarlett CJ, Bedalov A, Xu N et al. Sirt1 promotes n-myc oncogenesis through a positive feedback loop involving the effects of mkp3 and erk on n-myc protein stability. PLoS Genet 2011; 7: e1002135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tee AEL, Marshall GM, Liu PY, Xu N, Haber M, Norris MD et al. Opposing effects of two tissue transglutaminase protein isoforms in neuroblastoma cell differentiation. J Biol Chem 2010; 285: 3561–3567.

    Article  CAS  PubMed  Google Scholar 

  38. Liu T, Liu PY, Tee AEL, Haber M, Norris MD, Gleave ME et al. Over-expression of clusterin is a resistance factor to the anti-cancer effect of histone deacetylase inhibitors. Eur J Cancer 2009; 45: 1846–1854.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Eric Olsen for the HDAC5 expression constructs. This work was supported by a National Health and Medical Research Council project grant 1006002 (T Liu and CJ Scarlett) and a Cancer Council NSW project grant. T Liu is a recipient of an ARC Future Fellowship, AV Biankin and CJ Scarlett are recipients of Cancer Institute New South Wales Fellowships. Children’s Cancer Institute Australia is affiliated with University of New South Wales and Sydney Children’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Liu, P., Scarlett, C. et al. Histone deacetylase 5 blocks neuroblastoma cell differentiation by interacting with N-Myc. Oncogene 33, 2987–2994 (2014). https://doi.org/10.1038/onc.2013.253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.253

Keywords

This article is cited by

Search

Quick links