Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Evasion of p53 and G2/M checkpoints are characteristic of Hh-driven basal cell carcinoma

Abstract

Basal cell carcinoma (BCC), the most common type of cancer, is characterized by aberrant Hedgehog (Hh) pathway activity. Mutations in pathway components, such as PATCHED1 (PTCH1), are commonly found in BCC. While the tumor suppressor role of PTCH1 in BCC is well established, how Hh pathway activation disrupts normal skin homeostasis to promote BCC formationremains poorly understood. Like Ptc1, Sufu is a major negative regulator of the Hh pathway. Previously, we showed that inactivation of Sufu in the skin does not result in BCC formation. Why loss of Ptc1, but not Sufu, in the epidermis induces BCC formation is unclear. In this report, we utilized gene expression profiling to identify biological pathways and processes that distinguish Sufu from Ptc1 mutants, and discovered a novel role for Sufu in cell cycle regulation. We demonstrated that the Hh pathway activation inSufu and Ptc1 mutant skin is associated with abnormal cell cycle entry, ectopic expression of D-type cyclins and increasedDNA damage. However, despite the presence of DNA damage, p53 stabilization was impaired in the mutant skin. Alternative mechanism to halt genomic instability is the activation of G2/M cell cycle checkpoint, which can occur independent of p53. We found that while Ptc1 mutant cells continue to cycle, which would favor genomic instability, loss of Sufu results in G2/M cell cycle arrest.This finding may explain why inactivation of Sufu is not sufficient to drive BCC formation. Taken together, these studies revealed a unique role for Sufu in G2/M phase progression, and uncovered the molecular and cellular features associated with Hh-driven BCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ribeiro GR, Francisco G, Teixeira LV, Romao-Correia RF, Sanches JA Jr., Neto CF et al. Repetitive DNA alterations in human skin cancers. J Dermatol Sci 2004; 36: 79–86.

    Article  CAS  Google Scholar 

  2. Sardi I, Piazzini M, Palleschi G, Pinzi C, Taddei I, Arrigucci S et al. Molecular detection of microsatellite instability in basal cell carcinoma. Oncol Rep 2000; 7: 1119–1122.

    CAS  PubMed  Google Scholar 

  3. Reifenberger J, Wolter M, Knobbe CB, Kohler B, Schonicke A, Scharwachter C et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 2005; 152: 43–51.

    Article  CAS  Google Scholar 

  4. Hutchin ME, Kariapper MS, Grachtchouk M, Wang A, Wei L, Cummings D et al. Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev 2005; 19: 214–223.

    Article  CAS  Google Scholar 

  5. Epstein EH. . Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer 2008; 8: 743–754.

    Article  CAS  Google Scholar 

  6. Adolphe C, Hetherington R, Ellis T, Wainwright B . Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res 2006; 66: 2081–2088.

    Article  CAS  Google Scholar 

  7. Kasper M, Jaks V, Are A, Bergstrom A, Schwager A, Barker N et al. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc Natl Acad Sci USA 2011; 108: 4099–4104.

    Article  CAS  Google Scholar 

  8. Villani RM, Adolphe C, Palmer J, Waters MJ, Wainwright BJ . Patched1 inhibits epidermal progenitor cell expansion and basal cell carcinoma formation by limiting Igfbp2 activity. Cancer Prev Res (Phila) 2010; 3: 1222–1234.

    Article  CAS  Google Scholar 

  9. Humke EW, Dorn KV, Milenkovic L, Scott MP, Rohatgi R . The output of Hedgehog signaling is controlled by the dynamic association between suppressor of Fused and the Gli proteins. Genes Dev 2010; 24: 670–682.

    Article  CAS  Google Scholar 

  10. Tukachinsky H, Lopez LV, Salic A . A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol 2010; 191: 415–428.

    Article  CAS  Google Scholar 

  11. Li ZJ, Nieuwenhuis E, Nien W, Zhang X, Zhang J, Puviindran V et al. Kif7 regulates Gli2 through Sufu-dependent and -independent functions during skin development and tumorigenesis. Development 2012; 139: 4152–4161.

    Article  CAS  Google Scholar 

  12. Mill P, Mo R, Fu H, Grachtchouk M, Kim PC, Dlugosz AA et al. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev 2003; 17: 282–294.

    Article  CAS  Google Scholar 

  13. Nilsson M, Unden AB, Krause D, Malmqwist U, Raza K, Zaphiropoulos PG et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci USA 2000; 97: 3438–3443.

    Article  CAS  Google Scholar 

  14. Grachtchouk M, Mo R, Yu S, Zhang X, Sasaki H, Hui CC et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet 2000; 24: 216–217.

    Article  CAS  Google Scholar 

  15. Mill P, Mo R, Hu MC, Dagnino L, Rosenblum ND, Hui CC . Shh controls epithelial proliferation via independent pathways that converge on N-Myc. Dev Cell 2005; 9: 293–303.

    Article  CAS  Google Scholar 

  16. Kenney AM, Rowitch DH . Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 2000; 20: 9055–9067.

    Article  CAS  Google Scholar 

  17. Kenney AM, Cole MD, Rowitch DH . Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 2003; 130: 15–28.

    Article  CAS  Google Scholar 

  18. Abe Y, Oda-Sato E, Tobiume K, Kawauchi K, Taya Y, Okamoto K et al. Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2. Proc Natl Acad Sci USA 2008; 105: 4838–4843.

    Article  CAS  Google Scholar 

  19. Fan H, Khavari PA . Sonic hedgehog opposes epithelial cell cycle arrest. J Cell Biol 1999; 147: 71–76.

    Article  CAS  Google Scholar 

  20. Cooper AF, Yu KP, Brueckner M, Brailey LL, Johnson L, McGrath JM et al. Cardiac and CNS defects in a mouse with targeted disruption of suppressor of fused. Development 2005; 132: 4407–4417.

    Article  CAS  Google Scholar 

  21. Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott MP . Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev 1996; 10: 301–312.

    Article  CAS  Google Scholar 

  22. Svard J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergstrom A et al. Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell 2006; 10: 187–197.

    Article  Google Scholar 

  23. Ng D, Stavrou T, Liu L, Taylor MD, Gold B, Dean M et al. Retrospective family study of childhood medulloblastoma. Am J Med Genet A 2005; 134: 399–403.

    Article  Google Scholar 

  24. Aszterbaum M, Epstein J, Oro A, Douglas V, LeBoit PE, Scott MP et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 1999; 5: 1285–1291.

    Article  CAS  Google Scholar 

  25. Mancuso M, Pazzaglia S, Tanori M, Hahn H, Merola P, Rebessi S et al. Basal cell carcinoma and its development: insights from radiation-induced tumors in Ptch1-deficient mice. Cancer Res 2004; 64: 934–941.

    Article  CAS  Google Scholar 

  26. Nieuwenhuis E, Motoyama J, Barnfield PC, Yoshikawa Y, Zhang X, Mo R et al. Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia. Mol Cell Biol 2006; 26: 6609–6622.

    Article  CAS  Google Scholar 

  27. Oro AE, Higgins K. . Hair cycle regulation of Hedgehog signal reception. Dev Biol 2003; 255: 238–248.

    Article  CAS  Google Scholar 

  28. Grachtchouk V, Grachtchouk M, Lowe L, Johnson T, Wei L, Wang A et al. The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO J 2003; 22: 2741–2751.

    Article  CAS  Google Scholar 

  29. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  30. Merico D, Isserlin R, Stueker O, Emili A, Bader GD . Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE 2010; 5: e13984.

    Article  Google Scholar 

  31. Howell BG, Solish N, Lu C, Watanabe H, Mamelak AJ, Freed I et al. Microarray profiles of human basal cell carcinoma: insights into tumor growth and behavior. J Dermatol Sci 2005; 39: 39–51.

    Article  CAS  Google Scholar 

  32. O'Driscoll L, McMorrow J, Doolan P, McKiernan E, Mehta JP, Ryan E et al. Investigation of the molecular profile of basal cell carcinoma using whole genome microarrays. Mol Cancer 2006; 5: 74.

    Article  Google Scholar 

  33. Welss T, Papoutsaki M, Michel G, Reifenberger J, Chimenti S, Ruzicka T et al. Molecular basis of basal cell carcinoma: analysis of differential gene expression by differential display PCR and expression array. Int J Cancer 2003; 104: 66–72.

    Article  CAS  Google Scholar 

  34. Gambichler T, Skrygan M, Kaczmarczyk JM, Hyun J, Tomi NS, Sommer A et al. Increased expression of TGF-beta/Smad proteins in basal cell carcinoma. Eur J Med Res 2007; 12: 509–514.

    CAS  PubMed  Google Scholar 

  35. Lange D, Persson U, Wollina U, ten Dijke P, Castelli E, Heldin CH et al. Expression of TGF-beta related Smad proteins in human epithelial skin tumors. Int J Oncol 1999; 14: 1049–1056.

    CAS  PubMed  Google Scholar 

  36. Van Haren R, Feldman D, Sinha AA . Systematic comparison of nonmelanoma skin cancer microarray datasets reveals lack of consensus genes. Br J Dermatol 2009; 161: 1278–1287.

    Article  CAS  Google Scholar 

  37. Barnes EA, Kong M, Ollendorff V, Donoghue DJ . Patched1 interacts with cyclin B1 to regulate cell cycle progression. EMBO J 2001; 20: 2214–2223.

    Article  CAS  Google Scholar 

  38. Takizawa CG, Morgan DO . Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol 2000; 12: 658–665.

    Article  CAS  Google Scholar 

  39. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: 907–913.

    Article  CAS  Google Scholar 

  40. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    Article  CAS  Google Scholar 

  41. Cwinn MA, Mazerolle C, McNeill B, Ringuette R, Thurig S, Hui CC et al. Suppressor of fused is required to maintain the multipotency of neural progenitor cells in the retina. J Neurosci 2011; 31: 5169–5180.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E Nieuwenhuis and W Nien for initial characterization of the Sufu and Ptc1 mutants, and T Satkunendran for technical help. This research is funded by the Canadian Cancer Society Research Institute (2011-700774) to CCH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-C Hui.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Mack, S., Mak, T. et al. Evasion of p53 and G2/M checkpoints are characteristic of Hh-driven basal cell carcinoma. Oncogene 33, 2674–2680 (2014). https://doi.org/10.1038/onc.2013.212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.212

Keywords

This article is cited by

Search

Quick links