Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of β-catenin activation of the DKK1 promoter in prostate cancer

Abstract

Prostate cancer (PCa)bone metastases are unique in that majority of them induce excessive mineralized bone matrix, through undefined mechanisms, as opposed to most other cancers that induce bone resorption. Parathyroid hormone-related protein (PTHrP) is produced by PCa cells and intermittent PTHrP exposure has bone anabolic effects, suggesting that PTHrP could contribute to the excess bone mineralization. Wnts are bone-productive factors produced by PCa cells, and the Wnt inhibitor Dickkopfs-1 (DKK1) has been shown to promote PCa progression. These findings, in conjunction with the observation that PTHrP expression increases and DKK1 expression decreases as PCa progresses, led to the hypothesis that PTHrP could be a negative regulator of DKK1 expression in PCa cells and, hence, allow the osteoblastic activity of Wnts to be realized. To test this, we first demonstrated that PTHrP downregulated DKK1 mRNA and protein expression. We then found through multiple mutated DKK1 promoter assays that PTHrP, through c-Jun activation, downregulated the DKK1 promoter through a transcription factor (TCF) response element site. Furthermore, chromatin immunoprecipitation (ChIP) and re-ChIP assays revealed that PTHrP mediated this effect through inducing c-Jun to bind to a transcriptional activator complex consisting of β-catenin, which binds the most proximal DKK1 promoter, the TCF response element. Together, these results demonstrate a novel signaling linkage between PTHrP and Wnt signaling pathways that results in downregulation of a Wnt inhibitor allowing for Wnt activity that could contribute the osteoblastic nature of PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Weilbaecher KN, Guise TA, McCauley LK . Cancer to bone: a fatal attraction. Nat Rev Cancer 2011; 11: 411–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Keller ET, Brown J . Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem 2004; 91: 718–729.

    Article  CAS  PubMed  Google Scholar 

  3. Robinson DR, Zylstra CR, Williams BO . Wnt signaling and prostate cancer. Curr Drug Targets 2008; 9: 571–580.

    Article  CAS  PubMed  Google Scholar 

  4. Hall CL, Keller ET . The role of Wnts in bone metastases. Cancer Meta Rev 2006; 25: 551–558.

    Article  CAS  Google Scholar 

  5. MacDonald BT, Tamai K, He X . Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hall CL, Bafico A, Dai J, Aaronson SA, Keller ET . Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res 2005; 65: 7554–7560.

    Article  CAS  PubMed  Google Scholar 

  7. Hall CL, Daignault SD, Shah RB, Pienta KJ, Keller ET . Dickkopf-1 expression increases early in prostate cancer development and decreases during progression from primary tumor to metastasis. Prostate 2008; 68: 1396–1404.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lu Y, Cai Z, Xiao G, Keller ET, Mizokami A, Yao Z et al. Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption. Cancer Res 2007; 67: 3646–3653.

    Article  CAS  PubMed  Google Scholar 

  9. Liao J, Li X, Koh AJ, Berry JE, Thudi N, Rosol TJ et al. Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. Int J Cancer 2008; 123: 2267–2278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guise TA, Yoneda T, Yates AJ, Mundy GR . The combined effect of tumor-produced parathyroid hormone-related protein and transforming growth factor-alpha enhance hypercalcemia in vivo and bone resorption in vitro. J Clin Endocrinol Metab 1993; 77: 40–45.

    CAS  PubMed  Google Scholar 

  11. Uy HL, Guise TA, De La Mata J, Taylor SD, Story BM, Dallas MR et al. Effects of parathyroid hormone (PTH)-related protein and PTH on osteoclasts and osteoclast precursors in vivo. Endocrinology 1995; 136: 3207–3212.

    Article  CAS  PubMed  Google Scholar 

  12. Dougherty KM, Blomme EA, Koh AJ, Henderson JE, Pienta KJ, Rosol TJ et al. Parathyroid hormone-related protein as a growth regulator of prostate carcinoma. Cancer Res 1999; 59: 6015–6022.

    CAS  PubMed  Google Scholar 

  13. Iwamura M, di Sant'Agnese PA, Wu G, Benning CM, Cockett AT, Deftos LJ et al. Immunohistochemical localization of parathyroid hormone-related protein in human prostate cancer. Cancer Res 1993; 53: 1724–1726.

    CAS  PubMed  Google Scholar 

  14. Kremer R, Li J, Camirand A, Karaplis AC . Parathyroid hormone related protein (PTHrP) in tumor progression. Adv Exp Med Biol 2011; 720: 145–160.

    Article  CAS  PubMed  Google Scholar 

  15. Asadi F, Farraj M, Sharifi R, Malakouti S, Antar S, Kukreja S . Enhanced expression of parathyroid hormone-related protein in prostate cancer as compared with benign prostatic hyperplasia. Hum Pathol 1996; 27: 1319–1323.

    Article  CAS  PubMed  Google Scholar 

  16. Qin L, Qiu P, Wang L, Li X, Swarthout JT, Soteropoulos P et al. Gene expression profiles and transcription factors involved in parathyroid hormone signaling in osteoblasts revealed by microarray and bioinformatics. J Biol Chem 2003; 278: 19723–19731.

    Article  CAS  PubMed  Google Scholar 

  17. Azarani A, Goltzman D, Orlowski J . Structurally diverse N-terminal peptides of parathyroid hormone (PTH) and PTH-related peptide (PTHRP) inhibit the Na+/H+ exchanger NHE3 isoform by binding to the PTH/PTHRP receptor type I and activating distinct signaling pathways. J Biol Chem 1996; 271: 14931–14936.

    Article  CAS  PubMed  Google Scholar 

  18. Koh AJ, Beecher CA, Rosol TJ, McCauley LK . 3',5'-Cyclic adenosine monophosphate activation in osteoblastic cells: effects on parathyroid hormone-1 receptors and osteoblastic differentiation in vitro. Endocrinology 1999; 140: 3154–3162.

    Article  CAS  PubMed  Google Scholar 

  19. Lupp A, Klenk C, Rocken C, Evert M, Mawrin C, Schulz S . Immunohistochemical identification of the PTHR1 parathyroid hormone receptor in normal and neoplastic human tissues. Eur J Endocrinol 2010; 162: 979–986.

    Article  CAS  PubMed  Google Scholar 

  20. Tovar Sepulveda VA, Falzon M . Parathyroid hormone-related protein enhances PC-3 prostate cancer cell growth via both autocrine/paracrine and intracrine pathways. Regul Pept 2002; 105: 109–120.

    Article  CAS  PubMed  Google Scholar 

  21. Muller M, Gagiannis S, Nawroth PP, Brune M, Schilling T . Activation of the receptor for parathyroid hormone and parathyroid hormone related protein induces apoptosis via the extrinsic and intrinsic signaling pathway. Int J Mol Med 2009; 24: 373–380.

    PubMed  Google Scholar 

  22. Brown PH, Chen TK, Birrer MJ . Mechanism of action of a dominant-negative mutant of c-Jun. Oncogene 1994; 9: 791–799.

    CAS  PubMed  Google Scholar 

  23. Thompson EJ, Gupta A, Stratton MS, Bowden GT . Mechanism of action of a dominant negative c-jun mutant in inhibiting activator protein-1 activation. Mol Carcinog 2002; 35: 157–162.

    Article  CAS  PubMed  Google Scholar 

  24. Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 2004; 18: 1072–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li J, Wang CY . TBL1-TBLR1 and beta-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat Cell Biol 2008; 10: 160–169.

    Article  CAS  PubMed  Google Scholar 

  26. Muncan V, Sansom OJ, Tertoolen L, Phesse TJ, Begthel H, Sancho E et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol Cell Biol 2006; 26: 8418–8426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McCauley LK, Martin TJ . Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J Bone Miner Res 2012; 27: 1231–1239.

    Article  CAS  PubMed  Google Scholar 

  28. Deftos LJ, Barken I, Burton DW, Hoffman RM, Geller J . Direct evidence that PTHrP expression promotes prostate cancer progression in bone. Biochem Biophys Res Commun 2005; 327: 468–472.

    Article  CAS  PubMed  Google Scholar 

  29. Chirgwin JM, Mohammad KS, Guise TA . Tumor-bone cellular interactions in skeletal metastases. J Musculoskelet Neuronal Interact 2004; 4: 308–318.

    CAS  PubMed  Google Scholar 

  30. Rabbani SA, Gladu J, Harakidas P, Jamison B, Goltzman D . Over-production of parathyroid hormone-related peptide results in increased osteolytic skeletal metastasis by prostate cancer cells in vivo. Int J Cancer 1999; 80: 257–264.

    Article  CAS  PubMed  Google Scholar 

  31. Perez-Martinez FC, Alonso V, Sarasa JL, Nam-Cha SG, Vela-Navarrete R, Manzarbeitia F et al. Immunohistochemical analysis of low-grade and high-grade prostate carcinoma: relative changes of parathyroid hormone-related protein and its parathyroid hormone 1 receptor, osteoprotegerin and receptor activator of nuclear factor-kB ligand. J Clin Pathol 2007; 60: 290–294.

    Article  CAS  PubMed  Google Scholar 

  32. Clines GA, Mohammad KS, Bao Y, Stephens OW, Suva LJ, Shaughnessy JD Jr et al. Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol Endocrinol 2007; 21: 486–498.

    Article  CAS  PubMed  Google Scholar 

  33. Kane N, Jones M, Brosens JJ, Saunders PT, Kelly RW, Critchley HO . Transforming growth factor-beta1 attenuates expression of both the progesterone receptor and Dickkopf in differentiated human endometrial stromal cells. Mol Endocrinol 2008; 22: 716–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 2006; 25: 4116–4121.

    Article  CAS  PubMed  Google Scholar 

  35. Lee J, Yoon YS, Chung JH . Epigenetic silencing of the WNT antagonist DICKKOPF-1 in cervical cancer cell lines. Gynecol Oncol 2008; 109: 270–274.

    Article  CAS  PubMed  Google Scholar 

  36. Maehata T, Taniguchi H, Yamamoto H, Nosho K, Adachi Y, Miyamoto N et al. Transcriptional silencing of Dickkopf gene family by CpG island hypermethylation in human gastrointestinal cancer. World J Gastroenterol 2008; 14: 2702–2714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 2011; 26: 1953–1963.

    Article  CAS  PubMed  Google Scholar 

  38. Cowling VH, D'Cruz CM, Chodosh LA, Cole MD . c-Myc transforms human mammary epithelial cells through repression of the Wnt inhibitors DKK1 and SFRP1. Mol Cell Biol 2007; 27: 5135–5146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koppen A, Ait-Aissa R, Hopman S, Koster J, Haneveld F, Versteeg R et al. Dickkopf-1 is down-regulated by MYCN and inhibits neuroblastoma cell proliferation. Cancer Lett 2007; 256: 218–228.

    Article  CAS  PubMed  Google Scholar 

  40. Zhong Y, Wang Z, Fu B, Pan F, Yachida S, Dhara M et al. GATA6 activates Wnt signaling in pancreatic cancer by negatively regulating the Wnt antagonist Dickkopf-1. PLoS One 2011; 6: e22129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Navarro D, Agra N, Pestana A, Alonso J, Gonzalez-Sancho JM . The EWS/FLI1 oncogenic protein inhibits expression of the Wnt inhibitor DICKKOPF-1 gene and antagonizes beta-catenin/TCF-mediated transcription. Carcinogenesis 2009; 31: 394–401.

    Article  PubMed  Google Scholar 

  42. Grotewold L, Ruther U . The Wnt antagonist Dickkopf-1 is regulated by Bmp signaling and c-Jun and modulates programmed cell death. Embo J 2002; 21: 966–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Henderson E, Stein R . c-jun inhibits transcriptional activation by the insulin enhancer, and the insulin control element is the target of control. Mol Cell Biol 1994; 14: 655–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dennler S, Prunier C, Ferrand N, Gauthier JM, Atfi A . c-Jun inhibits transforming growth factor beta-mediated transcription by repressing Smad3 transcriptional activity. J Biol Chem 2000; 275: 28858–28865.

    Article  CAS  PubMed  Google Scholar 

  45. Li ZG, Mathew P, Yang J, Starbuck MW, Zurita AJ, Liu J et al. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J Clin Invest 2008; 118: 2697–2710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dai J, Keller J, Zhang J, Lu Y, Yao Z, Keller ET . Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Res 2005; 65: 8274–8285.

    Article  CAS  PubMed  Google Scholar 

  47. Lee YC, Cheng CJ, Bilen MA, Lu JF, Satcher RL, Yu-Lee LY et al. BMP4 promotes prostate tumor growth in bone through osteogenesis. Cancer Res 2011; 71: 5194–5203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nelson JB, Nabulsi AA, Vogelzang NJ, Breul J, Zonnenberg BA, Daliani DD et al. Suppression of prostate cancer induced bone remodeling by the endothelin receptor A antagonist atrasentan. J Urol 2003; 169: 1143–1149.

    Article  CAS  PubMed  Google Scholar 

  49. Kitagawa Y, Dai J, Zhang J, Keller JM, Nor J, Yao Z et al. Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Res 2005; 65: 10921–10929.

    Article  CAS  PubMed  Google Scholar 

  50. Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ et al. Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res 1996; 2: 1627–1636.

    CAS  PubMed  Google Scholar 

  51. Azari S, Ahmadi N, Tehrani MJ, Shokri F . Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran. Biologicals 2007; 35: 195–202.

    Article  CAS  PubMed  Google Scholar 

  52. van Bokhoven A, Varella-Garcia M, Korch C, Johannes WU, Smith EE, Miller HL et al. Molecular characterization of human prostate carcinoma cell lines. Prostate 2003; 57: 205–225.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH PO1-CA939000 (ETK and LKM), and the US Department of Defense W81XWH-10-1-0546 (SIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E T Keller.

Ethics declarations

Competing interests

The authors declare no conflict interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Yu, C., Dai, J. et al. Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of β-catenin activation of the DKK1 promoter in prostate cancer. Oncogene 33, 2464–2477 (2014). https://doi.org/10.1038/onc.2013.203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.203

Keywords

This article is cited by

Search

Quick links