Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Selective regulation of p38β protein and signaling by integrin-linked kinase mediates bladder cancer cell migration

Abstract

Integrin-linked kinase (ILK) and p38MAPK are protein kinases that transduce extracellular signals regulating cell migration and actin cytoskeletal organization. ILK-dependent regulation of p38MAPK is critical for mammalian kidney development and in smooth muscle cell migration, however, specific p38 isoforms has not been previously examined in ILK-regulated responses. Signaling by ILK and p38MAPK is often dysregulated in bladder cancer, and here we report a strong positive correlation between protein levels of ILK and p38β, which is the predominant isoform found in bladder cancer cells, as well as in patient-matched normal bladder and tumor samples. Knockdown by RNA interference of either p38β or ILK disrupts serum-induced, Rac1-dependent migration and actin cytoskeletal organization in bladder cancer cells. Surprisingly, ILK knockdown causes the selective reduction in p38β cellular protein level, without inhibiting p38β messenger RNA (mRNA) expression. The loss of p38β protein in ILK-depleted cells is partially rescued by the 26S proteasomal inhibitor MG132. Using co-precipitation and bimolecular fluorescent complementation assays, we find that ILK selectively forms cytoplasmic complexes with p38β. In situ proximity ligation assays further demonstrate that serum-stimulated assembly of endogenous ILK–p38β complexes is sensitive to QLT-0267, a small molecule ILK kinase inhibitor. Finally, inhibition of ILK reduces the amplitude and period of serum-induced activation of heat shock protein 27 (Hsp27), a target of p38β implicated in actin cytoskeletal reorganization. Our work identifies Hsp27 as a novel target of ILK–p38β signaling complexes, playing a key role in bladder cancer cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Cuenda A, Rousseau S . p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 2007; 1773: 1358–1375.

    Article  CAS  Google Scholar 

  2. Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA . p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med 2009; 15: 369–379.

    Article  CAS  Google Scholar 

  3. del Barco Barrantes I, Coya JM, Maina F, Arthur JS, Nebreda AR . Genetic analysis of specific and redundant roles for p38alpha and p38beta MAPKs during mouse development. Proc Natl Acad Sci USA 2011; 108: 12764–12769.

    Article  CAS  Google Scholar 

  4. Remy G, Risco AM, Inesta-Vaquera FA, Gonzalez-Teran B, Sabio G, Davis RJ et al. Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell Signal 2010; 22: 660–667.

    Article  CAS  Google Scholar 

  5. Li Q, Zhang N, Zhang D, Wang Y, Lin T, Zhou H et al. Determinants that control the distinct subcellular localization of p38alpha-PRAK and p38beta-PRAK complexes. J Biol Chem 2008; 283: 11014–11023.

    Article  CAS  Google Scholar 

  6. Cerezo-Guisado MI, del Reino P, Remy G, Kuma Y, Arthur JS, Gallego-Ortega D et al. Evidence of p38gamma and p38delta involvement in cell transformation processes. Carcinogenesis 2011; 32: 1093–1099.

    Article  CAS  Google Scholar 

  7. Otto KB, Acharya SS, Robinson VL . Stress-activated kinase pathway alteration is a frequent event in bladder cancer. Urol Oncol 2011; 30: 415–420.

    Article  Google Scholar 

  8. Herbsleb M, Christensen OF, Thykjaer T, Wiuf C, Borre M, Orntoft TF et al. Bioinformatic identification of FGF, p38-MAPK, and calcium signalling pathways associated with carcinoma in situ in the urinary bladder. BMC Cancer 2008; 8: 37.

    Article  Google Scholar 

  9. Kumar B, Koul S, Petersen J, Khandrika L, Hwa JS, Meacham RB et al. p38 mitogen-activated protein kinase-driven MAPKAPK2 regulates invasion of bladder cancer by modulation of MMP-2 and MMP-9 activity. Cancer Res 2010; 70: 832–841.

    Article  CAS  Google Scholar 

  10. Estrada Y, Dong J, Ossowski L . Positive crosstalk between ERK and p38 in melanoma stimulates migration and in vivo proliferation. Pigment Cell Melanoma Res 2009; 22: 66–76.

    Article  CAS  Google Scholar 

  11. Yong HY, Koh MS, Moon A . The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs 2009; 18: 1893–1905.

    Article  CAS  Google Scholar 

  12. Tan C, Mui A, Dedhar S . Integrin-linked kinase regulates inducible nitric oxide synthase and cyclooxygenase-2 expression in an NF-kappa B-dependent manner. J Biol Chem 2002; 277: 3109–3116.

    Article  CAS  Google Scholar 

  13. Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, Radeva G, Filmus J et al. Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 1996; 379: 91–96.

    Article  CAS  Google Scholar 

  14. Zervas CG, Gregory SL, Brown NH . Drosophila integrin-linked kinase is required at sites of integrin adhesion to link the cytoskeleton to the plasma membrane. J Cell Biol 2001; 152: 1007–1018.

    Article  CAS  Google Scholar 

  15. Mackinnon AC, Qadota H, Norman KR, Moerman DG, Williams BD . C. elegans PAT-4/ILK functions as an adaptor protein within integrin adhesion complexes. Curr Biol 2002; 12: 787–797.

    Article  CAS  Google Scholar 

  16. Sakai T, Li S, Docheva D, Grashoff C, Sakai K, Kostka G et al. Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes Dev 2003; 17: 926–940.

    Article  CAS  Google Scholar 

  17. Cabodi S, del Pilar Camacho-Leal M, Di Stefano P, Defilippi P . Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer 2010; 10: 858–870.

    Article  CAS  Google Scholar 

  18. Hannigan G, Troussard AA, Dedhar S . Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer 2005; 5: 51–63.

    Article  CAS  Google Scholar 

  19. Gao J, Zhu J, Li HY, Pan XY, Jiang R, Chen JX . Small interfering RNA targeting integrin-linked kinase inhibited the growth and induced apoptosis in human bladder cancer cells. Int J Biochem Cell Biol 2011; 43: 1294–1304.

    Article  CAS  Google Scholar 

  20. Matsui YAK, Ogawa O, Raven PA, Dedhar S, Gleave ME, Salh B et al. The importance of integrin-linked kinase in the regulation of bladder cancer invasion. Int J Cancer 2012; 130: 521–531.

    Article  CAS  Google Scholar 

  21. Qian Y, Zhong X, Flynn DC, Zheng JZ, Qiao M, Wu C et al. ILK mediates actin filament rearrangements and cell migration and invasion through PI3K/Akt/Rac1 signaling. Oncogene 2005; 24: 3154–3165.

    Article  CAS  Google Scholar 

  22. Lu H, Fedak PW, Dai X, Du C, Zhou YQ, Henkelman M et al. Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice. Circulation 2006; 114: 2271–2279.

    Article  CAS  Google Scholar 

  23. Leung-Hagesteijn C, Hu MC, Mahendra AS, Hartwig S, Klamut HJ, Rosenblum ND et al. Integrin-linked kinase mediates bone morphogenetic protein 7-dependent renal epithelial cell morphogenesis. Mol Cell Biol 2005; 25: 3648–3657.

    Article  CAS  Google Scholar 

  24. Smeeton J, Zhang X, Bulus N, Mernaugh G, Lange A, Karner CM et al. Integrin-linked kinase regulates p38 MAPK-dependent cell cycle arrest in ureteric bud development. Development 2010; 137: 3233–3243.

    Article  CAS  Google Scholar 

  25. Esfandiarei M, Yazdi SA, Gray V, Dedhar S, van Breemen C . Integrin-linked kinase functions as a downstream signal of platelet-derived growth factor to regulate actin polymerization and vascular smooth muscle cell migration. BMC Cell Biol 2010; 11: 16.

    Article  Google Scholar 

  26. Chaffer CL, Dopheide B, McCulloch DR, Lee AB, Moseley JM, Thompson EW et al. Upregulated MT1-MMP/TIMP-2 axis in the TSU-Pr1-B1/B2 model of metastatic progression in transitional cell carcinoma of the bladder. Clin Exp Metastasis 2005; 22: 115–125.

    Article  CAS  Google Scholar 

  27. Roussos ET, Condeelis JS, Patsialou A . Chemotaxis in cancer. Nat Rev Cancer 2011; 11: 573–587.

    Article  CAS  Google Scholar 

  28. Filipenko NR, Attwell S, Roskelley C, Dedhar S . Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via α-PIX. Oncogene 2005; 24: 5837–5849.

    Article  CAS  Google Scholar 

  29. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y . Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 2004; 20: 7618–7623.

    Article  Google Scholar 

  30. Jones TJ, Adapala RK, Geldenhuys WJ, Bursley C, AbouAlaiwi WA, Nauli SM et al. Primary cilia regulates the directional migration and barrier integrity of endothelial cells through the modulation of hsp27 dependent actin cytoskeletal organization. J Cell Physiol 2012; 227: 70–76.

    Article  CAS  Google Scholar 

  31. Zhu Z, Xu X, Yu Y, Graham M, Prince ME, Carey TE et al. Silencing heat shock protein 27 decreases metastatic behavior of human head and neck squamous cell cancer cells in vitro. Mol Pharmacol 2010; 7: 1283–1290.

    Article  CAS  Google Scholar 

  32. Shyu YJ, Hiatt SM, Duren HM, Ellis RE, Kerppola TK, Hu CD . Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat Protoc 2008; 3: 588–596.

    Article  CAS  Google Scholar 

  33. Mongroo PS, Johnstone CN, Naruszewicz I, Leung-Hagesteijn C, Sung RK, Carnio L et al. Beta-parvin inhibits integrin-linked kinase signaling and is downregulated in breast cancer. Oncogene 2004; 23: 8959–8970.

    Article  CAS  Google Scholar 

  34. New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood LJ et al. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J 1998; 17: 3372–3384.

    Article  CAS  Google Scholar 

  35. Jarvius M, Paulsson J, Weibrecht I, Leuchowius KJ, Andersson AC, Wahlby C et al. In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method. Mol Cell Proteomics 2007; 6: 1500–1509.

    Article  CAS  Google Scholar 

  36. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 2006; 3: 995–1000.

    Article  Google Scholar 

  37. Maydan M, McDonald PC, Sanghera J, Yan J, Rallis C, Pinchin S et al. Integrin-linked kinase is a functional Mn-dependent protein kinase that regulates glycogen synthase kinase-3β (GSK-3β) phosphorylation. PLoS ONE 2010; 5: e12356.

    Article  Google Scholar 

  38. Wagner EF, Nebreda AR . Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009; 9: 537–549.

    Article  CAS  Google Scholar 

  39. Hui L, Bakiri L, Mairhorfer A, Schweifer N, Haslinger C, Kenner L et al. p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet 2007; 39: 741–749.

    Article  CAS  Google Scholar 

  40. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR . p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 2007; 11: 191–205.

    Article  CAS  Google Scholar 

  41. Ventura JJ, Tenbaum S, Perdiguero E, Huth M, Guerra C, Barbacid M et al. p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nat Genet 2007; 39: 750–758.

    Article  CAS  Google Scholar 

  42. Junttila MR, Ala-Aho R, Jokilehto T, Peltonen J, Kallajoki M, Grenman R et al. p38alpha and p38delta mitogen-activated protein kinase isoforms regulate invasion and growth of head and neck squamous carcinoma cells. Oncogene 2007; 26: 5267–5279.

    Article  CAS  Google Scholar 

  43. Schindler EM, Hindes A, Gribben EL, Burns CJ, Yin Y, Lin MH et al. p38delta Mitogen-activated protein kinase is essential for skin tumor development in mice. Cancer Res 2009; 69: 4648–4655.

    Article  CAS  Google Scholar 

  44. Fukuda T, Chen K, Shi X, Wu C . PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival. J Biol Chem 2003; 278: 51324–51333.

    Article  CAS  Google Scholar 

  45. Silva G, Cunha A, Gregoire IP, Seldon MP, Soares MP . The antiapoptotic effect of heme oxygenase-1 in endothelial cells involves the degradation of p38 alpha MAPK isoform. J Immunol 2006; 177: 1894–1903.

    Article  CAS  Google Scholar 

  46. Montanez E, Wickström SA, Altstätter J, Chu H, Fässler R . Alpha-parvin controls vascular mural cell recruitment to vessel wall by regulating RhoA/ROCK signalling. EMBO J 2009; 28: 3132–3144.

    Article  CAS  Google Scholar 

  47. Nakrieko KA, Welch I, Dupuis H, Bryce D, Pajak A, Arnaud RS et al. Impaired hair follicle morphogenesis and polarized keratinocyte movement upon conditional inactivation of integrin-linked kinase in the epidermis. Mol Biol Cell 2008; 19: 1462–1473.

    Article  CAS  Google Scholar 

  48. New L, Jiang Y, Han J . Regulation of PRAK subcellular location by p38 MAP kinases. Mol Biol Cell 2003; 14: 2603–2616.

    Article  CAS  Google Scholar 

  49. Cornford PA, Dodson AR, Parsons KF, Desmond AD, Woolfenden A, Fordham M et al. Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 2000; 60: 7099–7105.

    CAS  PubMed  Google Scholar 

  50. Song HY, Liu YK, Feng JT, Cui JF, Dai Z, Zhang LJ et al. Proteomic analysis on metastasis-associated proteins of human hepatocellular carcinoma tissues. J Cancer Res Clin Oncol 2006; 132: 92–98.

    Article  CAS  Google Scholar 

  51. Wang A, Liu X, Sheng S, Ye H, Peng T, Shi F et al. Dysregulation of heat shock protein 27 expression in oral tongue squamous cell carcinoma. BMC Cancer 2009; 9: 167–174.

    Article  Google Scholar 

  52. Djakiew D, Pflug BR, Delsite R, Onoda M, Lynch JH, Arand G et al. Chemotaxis and chemokinesis of human prostate tumor cell lines in response to human prostate stromal cell secretory proteins containing a nerve growth factor-like protein. Cancer Res 1993; 53: 1416–1420.

    CAS  PubMed  Google Scholar 

  53. Coso S, Zeng Y, Sooraj D, Williams ED . Conserved signaling through vascular endothelial growth (VEGF) receptor family members in murine lymphatic endothelial cells. Exp Cell Res 2011; 317: 2397–2407.

    Article  CAS  Google Scholar 

  54. Irving Aaron T, Wang D, Vasilevski O, Latchoumanin O, Kozer N, Clayton Andrew HA et al. Regulation of actin dynamics by protein kinase R control of gelsolin enforces basal innate immune defense. Immunity 2012; 36: 795–806.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Aaron Irving, Dakang Xu and Howard Yim (Centre for Cancer Research, MIMR) for consultation and helpful discussions. Dr S Dedhar (University of British Columbia) kindly provided QLT-0267. This work was supported by grants to GH and EDW from the National Health and Medical Research Council of Australia, with additional support through the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E D Williams or G E Hannigan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Yuan, X., Wang, D. et al. Selective regulation of p38β protein and signaling by integrin-linked kinase mediates bladder cancer cell migration. Oncogene 33, 690–701 (2014). https://doi.org/10.1038/onc.2013.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.20

Keywords

This article is cited by

Search

Quick links