Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer

Abstract

NANOG is a key transcription factor for pluripotency in embryonic stem cells. The analysis of NANOG in human cells is confounded by the presence of multiple and highly similar paralogs. In particular, there are three paralogs encoding full-length proteins, namely, NANOG1, NANOG2 and NANOGP8, and at least eight additional paralogs that do not encode full-length NANOG proteins. Here, we have examined NANOG family expression in human embryonic stem cells (hESCs) and in human cancer cell lines using a multi-NANOG PCR that amplifies the three functional paralogs and most of the non-functional ones. As anticipated, we found that hESCs express large amounts of NANOG1 and, interestingly, they also express NANOG2. In contrast, most human cancer cells tested express NANOGP8 and the non-coding paralogs NANOGP4 and NANOGP5. Notably, in some cancer cell lines, the NANOG protein levels produced by NANOGP8 are comparable to those produced by NANOG1 in pluripotent cells. Finally, we show that NANOGP8 is as active as NANOG1 in the reprogramming of human and murine fibroblasts into induced pluripotent stem cells. These results show that cancer-associated NANOGP8 can contribute to promote de-differentiation and/or cellular plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Chambers I, Tomlinson SR . The transcriptional foundation of pluripotency. Development 2009; 136: 2311–2322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O et al. Nanog is the gateway to the pluripotent ground state. Cell 2009; 138: 722–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Booth HA, Holland PW . Eleven daughters of NANOG. Genomics 2004; 84: 229–238.

    Article  CAS  PubMed  Google Scholar 

  4. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643–655.

    Article  CAS  PubMed  Google Scholar 

  5. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631–642.

    Article  CAS  PubMed  Google Scholar 

  6. Wang SH, Tsai MS, Chiang MF, Li H . A novel NK-type homeobox gene, ENK (early embryo specific NK), preferentially expressed in embryonic stem cells. Gene Expr Patterns 2003; 3: 99–103.

    Article  CAS  PubMed  Google Scholar 

  7. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  8. Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 2009; 462: 595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Theunissen TW, Costa Y, Radzisheuskaya A, van Oosten AL, Lavial F, Pain B et al. Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development 2011; 138: 4853–4865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eberle I, Pless B, Braun M, Dingermann T, Marschalek R . Transcriptional properties of human NANOG1 and NANOG2 in acute leukemic cells. Nucleic Acids Res 2010; 38: 5384–5395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zbinden M, Duquet A, Lorente-Trigos A, Ngwabyt SN, Borges I, Ruiz i et al. NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J 2010; 29: 2659–2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang DF, Tsai SC, Wang XC, Xia P, Senadheera D, Lutzko C . Molecular characterization of the human NANOG protein. Stem Cells 2009; 27: 812–821.

    Article  CAS  PubMed  Google Scholar 

  13. Pan G, Pei D . The stem cell pluripotency factor NANOG activates transcription with two unusually potent subdomains at its C terminus. J Biol Chem 2005; 280: 1401–1407.

    Article  CAS  PubMed  Google Scholar 

  14. Do HJ, Lee WY, Lim HY, Oh JH, Kim DK, Kim JH et al. Two potent transactivation domains in the C-terminal region of human NANOG mediate transcriptional activation in human embryonic carcinoma cells. J Cell Biochem 2009; 106: 1079–1089.

    Article  CAS  PubMed  Google Scholar 

  15. Ambady S, Malcuit C, Kashpur O, Kole D, Holmes WF, Hedblom E et al. Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells. Int J Dev Biol 2010; 54: 1743–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishiguro T, Sato A, Ohata H, Sakai H, Nakagama H, Okamoto K . Differential expression of nanog1 and nanogp8 in colon cancer cells. Biochem Biophys Res Commun 2012; 418: 199–204.

    Article  CAS  PubMed  Google Scholar 

  17. Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C et al. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 2009; 27: 993–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeter CR, Liu B, Liu X, Chen X, Liu C, Calhoun-Davis T et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 2011; 30: 3833–3845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang J, Wang X, Li M, Han J, Chen B, Wang B et al. NANOGP8 is a retrogene expressed in cancers. FEBS J 2006; 273: 1723–1730.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Espinoza LA, Kinders RJ, Lawrence SM, Pfister TD, Zhou M et al. NANOG modulates stemness in human colorectal cancer. Oncogene 2013; 32: 4397–4405.

    Article  CAS  PubMed  Google Scholar 

  21. Uchino K, Hirano G, Hirahashi M, Isobe T, Shirakawa T, Kusaba H et al. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells. Exp Cell Res 2012; 318: 1799–1807.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Wang X, Chen B, Xiao Z, Li W, Lu Y et al. The human pluripotency gene NANOG/NANOGP8 is expressed in gastric cancer and associated with tumor development. Oncol Lett 2010; 1: 457–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suva ML, Riggi N, Bernstein BE . Epigenetic reprogramming in cancer. Science 2013; 339: 1567–1570.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JS, Kim J, Kim BS, Chung HY, Lee YY, Park CS et al. Identification and functional characterization of an alternative splice variant within the fourth exon of human nanog. Exp Mol Med 2005; 37: 601–607.

    Article  CAS  PubMed  Google Scholar 

  25. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J et al. The ground state of embryonic stem cell self-renewal. Nature 2008; 453: 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A . Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 2008; 6: e253.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moretto-Zita M, Jin H, Shen Z, Zhao T, Briggs SP, Xu Y . Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc Natl Acad Sci USA 2010; 107: 13312–13317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramakrishna S, Suresh B, Lim KH, Cha BH, Lee SH, Kim KS et al. PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells Dev 2011; 20: 1511–1519.

    Article  CAS  PubMed  Google Scholar 

  29. Fujita J, Crane AM, Souza MK, Dejosez M, Kyba M, Flavell RA et al. Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell 2008; 2: 595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grigoriadis AE, Kennedy M, Bozec A, Brunton F, Stenbeck G, Park IH et al. Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood 2010; 115: 2769–2776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 2008; 105: 2883–2888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carey BW, Markoulaki S, Hanna J, Saha K, Gao Q, Mitalipova M et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci USA 2009; 106: 157–162.

    Article  CAS  PubMed  Google Scholar 

  33. Hochedlinger K, Yamada Y, Beard C, Jaenisch R . Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 2005; 121: 465–477.

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Maria S Soengas (CNIO) for providing us with human primary fibroblasts and to Dr Miguel A Piris (CNIO) for providing us with all the human cancer cell lines. ARP is supported by the FPI Program of the Spanish Department of Science (MINECO). DP was funded by an EMBO Long-Term Fellowship. HL is supported by the ‘Ramon y Cajal’ Program (MINECO). Work in the laboratory of MS is funded by the CNIO and by grants from the MINECO (SAF), the European Union (ERC Advanced Grant), the Regional Government of Madrid, the Botin Foundation, the Ramon Areces Foundation and the AXA Foundation. Work in the laboratory of EFW is supported by grants from F-BBVA and the European Union (ERC Advanced Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Serrano.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palla, A., Piazzolla, D., Abad, M. et al. Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer. Oncogene 33, 2513–2519 (2014). https://doi.org/10.1038/onc.2013.196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.196

Keywords

This article is cited by

Search

Quick links