Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of novel TMPRSS2:ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2

Abstract

Prostate cancer (PCa) is one of the major public health problems in Western countries. Recently, the TMPRSS2:ERG gene fusion, which results in the aberrant expression of the transcription factor ERG, has been shown to be the most common gene rearrangement in PCa. Previous studies have determined the contributions of this fusion in PCa disease initiation and/or progression in vitro and in vivo. In this study on TMPRSS2:ERG regulation in PCa, we used an androgen receptor and TMPRSS2:ERG fusion double-negative PCa cell model: PC3c. In three cell clones with different TMPRSS2:ERG expression levels, ectopic expression of the fusion resulted in significant induction of cell migration and invasion in a dose-dependent manner. In agreement with this phenotype, high-throughput microarray analysis revealed that a set of genes, functionally associated with cell motility and invasiveness, were deregulated in a dose-dependent manner in TMPRSS2:ERG-expressing cells. Importantly, we identified increased MMP9 (Metalloproteinase 9) and PLXNA2 (Plexin A2) expression in TMPRSS2:ERG-positive PCa samples, and their expression levels were significantly correlated with ERG expression in a PCa cohort. In line with these findings, there was evidence that TMPRSS2:ERG directly and positively regulates MMP9 and PLXNA2 expression in PC3c cells. Moreover, PLXNA2 upregulation contributed to TMPRSS2:ERG-mediated enhancements of PC3c cell migration and invasion. Furthermore, and importantly, PLXNA2 expression was upregulated in metastatic PCa tumors compared with localized primary PCa tumors. This study provides novel insights into the role of the TMPRSS2:ERG fusion in PCa metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Richard J. Rebello, Christoph Oing, … Robert G. Bristow

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    Article  PubMed  Google Scholar 

  2. Squire JA, Park PC, Yoshimoto M, Alami J, Williams JL, Evans A et al. Prostate cancer as a model system for genetic diversity in tumors. Adv Cancer Res 2011; 112: 183–216.

    Article  CAS  PubMed  Google Scholar 

  3. Rubin MA, Maher CA, Chinnaiyan AM . Common gene rearrangements in prostate cancer. J Clin Oncol 2011; 29: 3659–3668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–648.

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, Cai Y, Ren C, Ittmann M . Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006; 66: 8347–8351.

    Article  CAS  PubMed  Google Scholar 

  6. FitzGerald LM, Agalliu I, Johnson K, Miller MA, Kwon EM, Hurtado-Coll A et al. Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer. BMC Cancer 2008; 8: 230.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gopalan A, Leversha MA, Satagopan JM, Zhou Q, Al-Ahmadie HA, Fine SW et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res 2009; 69: 1400–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoogland AM, Jenster G, van Weerden WM, Trapman J, van der Kwast T, Roobol MJ et al. ERG immunohistochemistry is not predictive for PSA recurrence, local recurrence or overall survival after radical prostatectomy for prostate cancer. Mod Pathol 2012; 25: 471–479.

    Article  CAS  PubMed  Google Scholar 

  9. Hermans KG, Boormans JL, Gasi D, van Leenders GJ, Jenster G, Verhagen PC et al. Overexpression of prostate-specific TMPRSS2(exon 0)-ERG fusion transcripts corresponds with favorable prognosis of prostate cancer. Clin Cancer Res 2009; 15: 6398–6403.

    Article  CAS  PubMed  Google Scholar 

  10. Saramaki OR, Harjula AE, Martikainen PM, Vessella RL, Tammela TL, Visakorpi T . TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin Cancer Res 2008; 14: 3395–3400.

    Article  PubMed  Google Scholar 

  11. Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, Flohr P et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 2008; 27: 253–263.

    Article  CAS  PubMed  Google Scholar 

  12. Demichelis F, Fall K, Perner S, Andren O, Schmidt F, Setlur SR et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 2007; 26: 4596–4599.

    Article  CAS  PubMed  Google Scholar 

  13. Nam RK, Sugar L, Wang Z, Yang W, Kitching R, Klotz LH et al. Expression of TMPRSS2:ERG gene fusion in prostate cancer cells is an important prognostic factor for cancer progression. Cancer Biol Ther 2007; 6: 40–45.

    Article  CAS  PubMed  Google Scholar 

  14. Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH, Yang LY et al. Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br J Cancer 2007; 97: 1690–1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, Setlur S et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 2006; 66: 8337–8341.

    Article  CAS  PubMed  Google Scholar 

  16. Mehra R, Tomlins SA, Yu J, Cao X, Wang L, Menon A et al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res 2008; 68: 3584–3590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 2008; 10: 177–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, True LD et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci USA 2008; 105: 2105–2110.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zong Y, Xin L, Goldstein AS, Lawson DA, Teitell MA, Witte ON . ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci USA 2009; 106: 12465–12470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 2009; 41: 524–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 2009; 41: 619–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 2010; 17: 443–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge M et al. Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. Embo J 2010; 29: 2147–2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chng KR, Chang CW, Tan SK, Yang C, Hong SZ, Sng NY et al. A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. Embo J 2011; 31: 2810–2823.

    Article  Google Scholar 

  25. Macintosh CA, Stower M, Reid N, Maitland NJ . Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Res 1998; 58: 23–28.

    CAS  PubMed  Google Scholar 

  26. Cheng L, Song SY, Pretlow TG, Abdul-Karim FW, Kung HJ, Dawson DV et al. Evidence of independent origin of multiple tumors from patients with prostate cancer. J Natl Cancer Inst 1998; 90: 233–237.

    Article  CAS  PubMed  Google Scholar 

  27. Andreoiu M, Cheng L . Multifocal prostate cancer: biologic, prognostic, and therapeutic implications. Hum Pathol 2010; 41: 781–793.

    Article  PubMed  Google Scholar 

  28. Mehra R, Han B, Tomlins SA, Wang L, Menon A, Wasco MJ et al. Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res 2007; 67: 7991–7995.

    Article  CAS  PubMed  Google Scholar 

  29. Barry M, Perner S, Demichelis F, Rubin MA . TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology 2007; 70: 630–633.

    Article  PubMed  Google Scholar 

  30. Minner S, Gartner M, Freudenthaler F, Bauer M, Kluth M, Salomon G et al. Marked heterogeneity of ERG expression in large primary prostate cancers. Mod Pathol 2012; 26: 106–116.

    Article  PubMed  Google Scholar 

  31. Furusato B, Tan SH, Young D, Dobi A, Sun C, Mohamed AA et al. ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis 2010; 13: 228–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fradet A, Sorel H, Deux B, Clézardin P, Bonnelye E . A new murine model of osteoblastic/osteolytic lesions from human androgen-resistant prostate cancer. Bone 2010; 47 (Special Issue): S289.

    Google Scholar 

  33. Scher HI, Morris MJ, Basch E, Heller G . End points and outcomes in castration-resistant prostate cancer: from clinical trials to clinical practice. J Clin Oncol 2011; 29: 3695–3704.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Clark J, Merson S, Jhavar S, Flohr P, Edwards S, Foster CS et al. Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene 2007; 26: 2667–2673.

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Cai Y, Yu W, Ren C, Spencer DM, Ittmann M . Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res 2008; 68: 8516–8524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kunderfranco P, Mello-Grand M, Cangemi R, Pellini S, Mensah A, Albertini V et al. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One 2010; 5: e10547.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P et al. FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2010; 70: 6735–6745.

    Article  CAS  PubMed  Google Scholar 

  38. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006; 25: 1696–1708.

    Article  CAS  PubMed  Google Scholar 

  39. Castellano G, Malaponte G, Mazzarino MC, Figini M, Marchese F, Gangemi P et al. Activation of the osteopontin/matrix metalloproteinase-9 pathway correlates with prostate cancer progression. Clin Cancer Res 2008; 14: 7470–7480.

    Article  CAS  PubMed  Google Scholar 

  40. Nese N, Kandiloglu AR, Simsek G, Lekili M, Ozdamar A, Catalkaya A et al. Comparison of the desmoplastic reaction and invading ability in invasive ductal carcinoma of the breast and prostatic adenocarcinoma based on the expression of heat shock protein 47 and fascin. Anal Quant Cytol Histol 2010; 32: 90–101.

    PubMed  Google Scholar 

  41. Huang da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  PubMed  Google Scholar 

  42. Steffan JJ, Koul S, Meacham RB, Koul HK . The transcription factor SPDEF suppresses prostate tumor metastasis. J Biol Chem 2012; 287: 29968–29978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Himelstein BP, Lee EJ, Sato H, Seiki M, Muschel RJ . Transcriptional activation of the matrix metalloproteinase-9 gene in an H-ras and v-myc transformed rat embryo cell line. Oncogene 1997; 14: 1995–1998.

    Article  CAS  PubMed  Google Scholar 

  44. Franco M, Tamagnone L . Tyrosine phosphorylation in semaphorin signalling: shifting into overdrive. EMBO Rep 2008; 9: 865–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Capparuccia L, Tamagnone L . Semaphorin signaling in cancer cells and in cells of the tumor microenvironment–two sides of a coin. J Cell Sci 2009; 122: 1723–1736.

    Article  CAS  PubMed  Google Scholar 

  46. Wong OG, Nitkunan T, Oinuma I, Zhou C, Blanc V, Brown RS et al. Plexin-B1 mutations in prostate cancer. Proc Natl Acad Sci USA 2007; 104: 19040–19045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Deryugina EI, Quigley JP . Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006; 25: 9–34.

    Article  CAS  PubMed  Google Scholar 

  48. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  49. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2001; 412: 822–826.

    Article  CAS  PubMed  Google Scholar 

  50. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: 239–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 2005; 8: 393–406.

    Article  CAS  PubMed  Google Scholar 

  52. Mitelman F, Johansson B, Mertens F . The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 2007; 7: 233–245.

    Article  CAS  PubMed  Google Scholar 

  53. Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R et al. TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One 2011; 6: e21650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Attard G, Swennenhuis JF, Olmos D, Reid AH, Vickers E, A'Hern R et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res 2009; 69: 2912–2918.

    Article  CAS  PubMed  Google Scholar 

  55. Stott SL, Lee RJ, Nagrath S, Yu M, Miyamoto DT, Ulkus L et al. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med 2010; 2: 25ra3.

    Article  Google Scholar 

  56. Guo CC, Wang Y, Xiao L, Troncoso P, Czerniak BA . The relationship of TMPRSS2-ERG gene fusion between primary and metastatic prostate cancers. Hum Pathol 2012; 43: 644–649.

    Article  CAS  PubMed  Google Scholar 

  57. Perner S, Svensson MA, Hossain RR, Day JR, Groskopf J, Slaughter RC et al. ERG rearrangement metastasis patterns in locally advanced prostate cancer. Urology 2010; 75: 762–767.

    Article  PubMed  Google Scholar 

  58. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  59. Valastyan S, Weinberg RA . Tumor metastasis: molecular insights and evolving paradigms. Cell 2012; 147: 275–292.

    Article  Google Scholar 

  60. Becker-Santos DD, Guo Y, Ghaffari M, Vickers ED, Lehman M, Altamirano-Dimas M et al. Integrin-linked kinase as a target for ERG-mediated invasive properties in prostate cancer models. Carcinogenesis 2012; 33: 2558–2567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kessenbrock K, Plaks V, Werb Z . Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141: 52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dos Reis ST, Pontes J Jr, Villanova FE, Borra PM, Antunes AA, Dall'oglio MF et al. Genetic polymorphisms of matrix metalloproteinases: susceptibility and prognostic implications for prostate cancer. J Urol 2009; 181: 2320–2325.

    Article  PubMed  Google Scholar 

  63. Nakamura Y, Esnault S, Maeda T, Kelly EA, Malter JS, Jarjour NN . Ets-1 regulates TNF-alpha-induced matrix metalloproteinase-9 and tenascin expression in primary bronchial fibroblasts. J Immunol 2004; 172: 1945–1952.

    Article  CAS  PubMed  Google Scholar 

  64. Hanzawa M, Shindoh M, Higashino F, Yasuda M, Inoue N, Hida K et al. Hepatocyte growth factor upregulates E1AF that induces oral squamous cell carcinoma cell invasion by activating matrix metalloproteinase genes. Carcinogenesis 2000; 21: 1079–1085.

    Article  CAS  PubMed  Google Scholar 

  65. Hance MW, Dole K, Gopal U, Bohonowych JE, Jezierska-Drutel A, Neumann CA et al. Secreted Hsp90 is a novel regulator of the epithelial to mesenchymal transition (EMT) in prostate cancer. J Biol Chem 2012; 287: 37732–37744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kato T, Fujita Y, Nakane K, Kojima T, Nozawa Y, Deguchi T et al. ETS1 promotes chemoresistance and invasion of paclitaxel-resistant, hormone-refractory PC3 prostate cancer cells by up-regulating MDR1 and MMP9 expression. Biochem Biophys Res Commun 2012; 417: 966–971.

    Article  CAS  PubMed  Google Scholar 

  67. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2: 737–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002; 2: 289–300.

    Article  CAS  PubMed  Google Scholar 

  69. Kolodkin AL, Matthes DJ, Goodman CS . The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 1993; 75: 1389–1399.

    Article  CAS  PubMed  Google Scholar 

  70. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491: 399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Blanc V, Nariculam J, Munson P, Freeman A, Klocker H, Masters J et al. A role for class 3 semaphorins in prostate cancer. Prostate 2011; 71: 649–658.

    Article  CAS  PubMed  Google Scholar 

  72. Zhou C, Wong OG, Masters JR, Williamson M . Effect of cancer-associated mutations in the PlexinB1 gene. Mol Cancer 2012; 11: 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vlaeminck-Guillem V, Carrere S, Dewitte F, Stehelin D, Desbiens X, Duterque-Coquillaud M . The Ets family member Erg gene is expressed in mesodermal tissues and neural crests at fundamental steps during mouse embryogenesis. Mech Dev 2000; 91: 331–335.

    Article  CAS  PubMed  Google Scholar 

  74. Brown CB, Feiner L, Lu MM, Li J, Ma X, Webber AL et al. PlexinA2 and semaphorin signaling during cardiac neural crest development. Development 2001; 128: 3071–3080.

    CAS  PubMed  Google Scholar 

  75. Toyofuku T, Yoshida J, Sugimoto T, Yamamoto M, Makino N, Takamatsu H et al. Repulsive and attractive semaphorins cooperate to direct the navigation of cardiac neural crest cells. Dev Biol 2008; 321: 251–262.

    Article  CAS  PubMed  Google Scholar 

  76. Dhordain P, Dewitte F, Desbiens X, Stehelin D, Duterque-Coquillaud M . Mesodermal expression of the chicken erg gene associated with precartilaginous condensation and cartilage differentiation. Mech Dev 1995; 50: 17–28.

    Article  CAS  PubMed  Google Scholar 

  77. Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K et al. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci USA 2009; 106: 13933–13938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Le Jeune M, Tomavo N, Tian TV, Flourens A, Marchand N, Camuzeaux B et al. Identification of four alternatively spliced transcripts of the Ucma/GRP gene, encoding a new Gla-containing protein. Exp Cell Res 2010; 316: 203–215.

    Article  CAS  PubMed  Google Scholar 

  79. Sakurai-Yageta M, Recchi C, Le Dez G, Sibarita JB, Daviet L, Camonis J et al. The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J Cell Biol 2008; 181: 985–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Flajollet S, Poras I, Carosella ED, Moreau P . RREB-1 is a transcriptional repressor of HLA-G. J Immunol 2009; 183: 6948–6959.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank A Fradet, M Le Jeune, M Holder, C Delliaux, G Boulay, M Dubuissez, I Loison, Z Kherrouche and N Malaquin for their excellent technical advices; D Lacorre and E Werkmeister from the BioImaging Center Lille Nord de France for their technical assistance; E Lelièvre and D Leprince for their stimulating discussions; and C Engel-Gautier for her critical reading of the manuscript. We also like to thank the local Tumor Tissue Bank (Tumorothèque), Regional Reference Oncology Center (CRRC) (Head, Pr. MC Copin) in Lille, France. This work was supported by grants from the Centre national de la recherche scientifique (CNRS), La Ligue contre le Cancer (Comité du Pas-de-Calais) and the Institut national du cancer (INCa_4419). TV Tian is a recipient of PhD fellowships from the Institut Pasteur of Lille/Nord-Pas-de-Calais Regional Council (Région Nord-Pas-de-Calais) and the Association pour la recherche sur le cancer (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Duterque-Coquillaud.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, T., Tomavo, N., Huot, L. et al. Identification of novel TMPRSS2:ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2. Oncogene 33, 2204–2214 (2014). https://doi.org/10.1038/onc.2013.176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.176

Keywords

This article is cited by

Search

Quick links