Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the Stat3 activation

Abstract

Tumor-associated macrophage (TAM)-related chronic inflammation and interleukin-6 (IL-6) contribute to the progression of nasopharyngeal carcinoma (NPC). In this study, we characterized TAMs and IL-6 expression in 212 biopsied NPC and 119 non-tumor nasopharyngeal epithelium (NPE) tissues by tissue array. In comparison with that in the NPE tissues, more TAM infiltrates and a higher density of IL-6 expression were detected in NPC tissues, which were associated with the poor survival of NPC patients. In contrast, little or no LPLUNC1, a regulator of inflammation, expression was detected in NPC tissues, and the levels of LPLUNC1 expression in the NPC were associated negatively with the numbers of TAMs and the levels of IL-6 expression, but positively with the survival of NPC patients. Induction of LPLUNC1 overexpression in NPC cells mitigated lipopolysaccharide (LPS)-induced IL-6, IL-8, tumor necrosis factor-α and IL-1β expression or treatment of THP-1 macrophages with LPLUNC1 inhibited spontaneous and LPS-induced IL-6 expression in vitro. IL-6-promoted NPC cell proliferation in a dose- and time-dependent manner, accompanied by increasing cyclin D1 and Bcl-2 expression and the Stat3 activation, but inhibiting Bax and p21 expression. Induction of LPLUNC1 overexpression inhibited NPC cell proliferation, induced NPC cell arrest, promoted NPC cell apoptosis even after IL-6 stimulation and inhibited the growth of implanted NPC tumors in vivo, which were associated with decreasing cyclin D1 and Bcl-2 expression and the Janus kinase 2 (JAK2)/Stat3 activation, but enhancing Bax and p21 expression. These results suggest that LPLUNC1 can inhibit inflammation and NPC growth by downregulating the Stat3 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mantovani A, Allavena P, Sica A, Balkwill F . Cancer-related inflammation. Nature 2008; 454: 436–444.

    Article  CAS  Google Scholar 

  2. Lu H, Ouyang W, Huang C . Inflammation, a key event in cancer development. Mol Cancer Res 2006; 4: 221–233.

    Article  Google Scholar 

  3. Candido J, Hagemann T . Cancer-related inflammation. J Clin Immunol 2012; 33 (Suppl 1): 79–84.

    Google Scholar 

  4. Balkwill FR, Mantovani A . Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 2012; 22: 33–40.

    Article  CAS  Google Scholar 

  5. Hussain SP, Harris CC . Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 2007; 121: 2373–2380.

    Article  CAS  Google Scholar 

  6. de Visser KE, Coussens LM . The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol 2006; 13: 118–137.

    Article  Google Scholar 

  7. Mantovani A . Cancer: inflaming metastasis. Nature 2009; 457: 36–37.

    Article  CAS  Google Scholar 

  8. Yang Y, Zhou H, Li W, Zhou M, Zeng Z, Xiong W et al. Lipopolysaccharide (LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5-8F via NFkappaB and MAPKs signaling pathways. Mol Immunol 2007; 44: 984–992.

    Article  CAS  Google Scholar 

  9. Liao Q, Guo X, Li X, Chen P, Liang F, Tang H et al. Analysis of the contribution of nasopharyngeal epithelial cancer cells to the induction of a local inflammatory response. J Cancer Res Clin Oncol 2011; 138: 57–64.

    Article  Google Scholar 

  10. Shih J, Yuan A, Chen JJW, Yang P . Tumor-associated macrophage: its role in cancer invasion and metastasis. J Cancer Mol 2006; 2: 6.

    Google Scholar 

  11. Cocco C, Airoldi I . Tumor-associated macrophages: from cancer supporters to tumoricidal effectors. Immunotherapy 2012; 4: 667–668.

    Article  CAS  Google Scholar 

  12. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A . Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 2006; 25: 315–322.

    Article  Google Scholar 

  13. Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM . Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012, 2012: 948098.

  14. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T et al. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med 2010; 362: 875–885.

    Article  CAS  Google Scholar 

  15. Takayama H, Nishimura K, Tsujimura A, Nakai Y, Nakayama M, Aozasa K et al. Increased infiltration of tumor associated macrophages is associated with poor prognosis of bladder carcinoma in situ after intravesical bacillus Calmette-Guerin instillation. J Urol 2009; 181: 1894–1900.

    Article  CAS  Google Scholar 

  16. Solinas G, Germano G, Mantovani A, Allavena P . Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86: 1065–1073.

    Article  CAS  Google Scholar 

  17. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F . Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374: 1–20.

    Article  CAS  Google Scholar 

  18. Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 2009; 28: 2940–2947.

    Article  CAS  Google Scholar 

  19. Tan EL, Selvaratnam G, Kananathan R, Sam CK . Quantification of Epstein-Barr virus DNA load, interleukin-6, interleukin-10, transforming growth factor-beta1 and stem cell factor in plasma of patients with nasopharyngeal carcinoma. BMC Cancer 2006; 6: 227.

    Article  Google Scholar 

  20. Chow KC, Chiou SH, Ho SP, Tsai MH, Chen CL, Wang LS et al. The elevated serum interleukin-6 correlates with the increased serum butyrate level in patients with nasopharyngeal carcinoma. Oncol Rep 2003; 10: 813–819.

    CAS  PubMed  Google Scholar 

  21. Bingle CD, Wilson K, Lunn H, Barnes FA, High AS, Wallace WA et al. Human LPLUNC1 is a secreted product of goblet cells and minor glands of the respiratory and upper aerodigestive tracts. Histochem Cell Biol 2010; 133: 505–515.

    Article  CAS  Google Scholar 

  22. Bingle CD, Craven CJ . PLUNC: a novel family of candidate host defence proteins expressed in the upper airways and nasopharynx. Hum Mol Genet 2002; 11: 937–943.

    Article  CAS  Google Scholar 

  23. Bingle L, Bingle CD . Distribution of human PLUNC/BPI fold-containing (BPIF) proteins. Biochem Soc Trans 2011; 39: 1023–1027.

    Article  CAS  Google Scholar 

  24. Shin OS, Uddin T, Citorik R, Wang JP, Della Pelle P, Kradin RL et al. LPLUNC1 modulates innate immune responses to Vibrio cholerae. J Infect Dis 2011; 204: 1349–1357.

    Article  CAS  Google Scholar 

  25. Vargas PA, Speight PM, Bingle CD, Barrett AW, Bingle L . Expression of PLUNC family members in benign and malignant salivary gland tumours. Oral Dis 2008; 14: 613–619.

    Article  CAS  Google Scholar 

  26. Zhang B, Nie X, Xiao B, Xiang J, Shen S, Gong J et al. Identification of tissue-specific genes in nasopharyngeal epithelial tissue and differentially expressed genes in nasopharyngeal carcinoma by suppression subtractive hybridization and cDNA microarray. Genes Chromosomes Cancer 2003; 38: 80–90.

    Article  CAS  Google Scholar 

  27. Baay M, Brouwer A, Pauwels P, Peeters M, Lardon F . Tumor cells and tumor-associated macrophages: secreted proteins as potential targets for therapy. Clin Dev Immunol 2011, 2011: 565187.

    Article  Google Scholar 

  28. Sgambato A, Cittadini A . Inflammation and cancer: a multifaceted link. Eur Rev Med Pharmacol Sci 2011; 14: 263–268.

    Google Scholar 

  29. Rodriguez-Vita J, Lawrence T . The resolution of inflammation and cancer. Cytokine Growth Factor Rev 2011; 21: 61–65.

    Article  Google Scholar 

  30. Motilva V . Inflammation and cancer: new targets and novel therapeutic approach. Curr Pharm Des 2012; 18: 3829–3830.

    Article  CAS  Google Scholar 

  31. Fukuda K, Kobayashi A, Watabe K . The role of tumor-associated macrophage in tumor progression. Front Biosci (Schol Ed) 2012; 4: 787–798.

    Google Scholar 

  32. Sica A, Allavena P, Mantovani A . Cancer related inflammation: the macrophage connection. Cancer Lett 2008; 267: 204–215.

    Article  CAS  Google Scholar 

  33. Balkwill F, Charles KA, Mantovani A . Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7: 211–217.

    Article  CAS  Google Scholar 

  34. Zhang BC, Gao J, Wang J, Rao ZG, Wang BC, Gao JF . Tumor-associated macrophages infiltration is associated with peritumoral lymphangiogenesis and poor prognosis in lung adenocarcinoma. Med Oncol 2010; 28: 1447–1452.

    Article  Google Scholar 

  35. Allavena P, Sica A, Solinas G, Porta C, Mantovani A . The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 2008; 66: 1–9.

    Article  Google Scholar 

  36. Wang R, Zhang J, Chen S, Lu M, Luo X, Yao S et al. Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung Cancer 2011; 74: 188–196.

    Article  Google Scholar 

  37. Bingle CD, Bingle L . Characterisation of the human plunc gene, a gene product with an upper airways and nasopharyngeal restricted expression pattern. Biochim Biophys Acta 2000; 1493: 363–367.

    Article  CAS  Google Scholar 

  38. Di YP, Harper R, Zhao Y, Pahlavan N, Finkbeiner W, Wu R . Molecular cloning and characterization of spurt, a human novel gene that is retinoic acid-inducible and encodes a secretory protein specific in upper respiratory tracts. J Biol Chem 2003; 278: 1165–1173.

    Article  CAS  Google Scholar 

  39. Musa M, Wilson K, Sun L, Mulay A, Bingle L, Marriott HM et al. Differential localisation of BPIFA1 (SPLUNC1) and BPIFB1 (LPLUNC1) in the nasal and oral cavities of mice. Cell Tissue Res 2012; 350: 455–464.

    Article  CAS  Google Scholar 

  40. Canny G, Levy O . Bactericidal/permeability-increasing protein (BPI) and BPI homologs at mucosal sites. Trends Immunol 2008; 29: 541–547.

    Article  CAS  Google Scholar 

  41. Ishihara K, Hirano T . IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev 2002; 13: 357–368.

    Article  CAS  Google Scholar 

  42. Hong DS, Angelo LS, Kurzrock R . Interleukin-6 and its receptor in cancer: implications for Translational Therapeutics. Cancer 2007; 110: 1911–1928.

    Article  CAS  Google Scholar 

  43. Strassmann G, Fong M, Kenney JS, Jacob CO . Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest 1992; 89: 1681–1684.

    Article  CAS  Google Scholar 

  44. Becker C, Fantini MC, Wirtz S, Nikolaev A, Lehr HA, Galle PR et al. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 2005; 4: 217–220.

    Article  CAS  Google Scholar 

  45. Hsu HS, Lin JH, Hsu TW, Su K, Wang CW, Yang KY et al. Mesenchymal stem cells enhance lung cancer initiation through activation of IL-6/JAK2/STAT3 pathway. Lung Cancer 2012; 75: 167–177.

    Article  Google Scholar 

  46. Yu H, Pardoll D, Jove R . STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9: 798–809.

    Article  CAS  Google Scholar 

  47. Kishimoto T . Interleukin-6: from basic science to medicine–40 years in immunology. Annu Rev Immunol 2005; 23: 1–21.

    Article  CAS  Google Scholar 

  48. Chen H, Lee JM, Zong Y, Borowitz M, Ng MH, Ambinder RF et al. Linkage between STAT regulation and Epstein-Barr virus gene expression in tumors. J Virol 2001; 75: 2929–2937.

    Article  CAS  Google Scholar 

  49. Hsiao JR, Jin YT, Tsai ST, Shiau AL, Wu CL, Su WC . Constitutive activation of STAT3 and STAT5 is present in the majority of nasopharyngeal carcinoma and correlates with better prognosis. Br J Cancer 2003; 89: 344–349.

    Article  CAS  Google Scholar 

  50. Lin CM, Shyu KG, Wang BW, Chang H, Chen YH, Chiu JH . Chrysin suppresses IL-6-induced angiogenesis via down-regulation of JAK1/STAT3 and VEGF: an in vitro and in ovo approach. J Agric Food Chem 2010; 58: 7082–7087.

    Article  CAS  Google Scholar 

  51. Kim SR, Bae MK, Kim JY, Wee HJ, Yoo MA, Bae SK . Aspirin induces apoptosis through the blockade of IL-6-STAT3 signaling pathway in human glioblastoma A172 cells. Biochem Biophys Res Commun 2009; 387: 342–347.

    Article  CAS  Google Scholar 

  52. Ataie-Kachoie P, Pourgholami MH, Morris DL . Inhibition of the IL-6 signaling pathway: A strategy to combat chronic inflammatory diseases and cancer. Cytokine Growth Factor Rev 2012; 24: 163–173.

    Article  Google Scholar 

  53. Fan SQ, Ma J, Zhou J, Xiong W, Xiao BY, Zhang WL et al. Differential expression of Epstein-Barr virus-encoded RNA and several tumor-related genes in various types of nasopharyngeal epithelial lesions and nasopharyngeal carcinoma using tissue microarray analysis. Hum Pathol 2006; 37: 593–605.

    Article  CAS  Google Scholar 

  54. Park EK, Jung HS, Yang HI, Yoo MC, Kim C, Kim KS . Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res 2007; 56: 45–50.

    Article  CAS  Google Scholar 

  55. Zhang X, Xiao W, Wang L, Tian Z, Zhang J . Deactivation of signal transducer and activator of transcription 3 reverses chemotherapeutics resistance of leukemia cells via down-regulating P-gp. PLoS One 2011; 6: e20965.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National High Technology Research and Development Program of China (2012AA02A206), the National Natural Science Foundation of China (91229122, 81071644, 81172189, 81101509, 81171930, 81272254 and 81272298), the 111 project (111-2-12), the Program for New Century Excellent Talents in University (NCET-11-0520) and the Hunan Province Natural Sciences Foundation of China (10JJ7003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Xiong or G Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, Q., Zeng, Z., Guo, X. et al. LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the Stat3 activation. Oncogene 33, 2098–2109 (2014). https://doi.org/10.1038/onc.2013.161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.161

Keywords

This article is cited by

Search

Quick links