Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Translation factors and ribosomal proteins control tumor onset and progression: how?

Abstract

Gene expression is shaped by translational control. The modalities and the extent by which translation factors modify gene expression have revealed therapeutic scenarios. For instance, eukaryotic initiation factor (eIF)4E activity is controlled by the signaling cascade of growth factors, and drives tumorigenesis by favoring the translation of specific mRNAs. Highly specific drugs target the activity of eIF4E. Indeed, the antitumor action of mTOR complex 1 (mTORc1) blockers like rapamycin relies on their capability to inhibit eIF4E assembly into functional eIF4F complexes. eIF4E biology, from its inception to recent pharmacological targeting, is proof-of-principle that translational control is druggable. The case for eIF4E is not isolated. The translational machinery is involved in the biology of cancer through many other mechanisms. First, untranslated sequences on mRNAs as well as noncoding RNAs regulate the translational efficiency of mRNAs that are central for tumor progression. Second, other initiation factors like eIF6 show a tumorigenic potential by acting downstream of oncogenic pathways. Third, genetic alterations in components of the translational apparatus underlie an entire class of inherited syndromes known as ‘ribosomopathies’ that are associated with increased cancer risk. Taken together, data suggest that in spite of their evolutionary conservation and ubiquitous nature, variations in the activity and levels of ribosomal proteins and translation factors generate highly specific effects. Beside, as the structures and biochemical activities of several noncoding RNAs and initiation factors are known, these factors may be amenable to rational pharmacological targeting. The future is to design highly specific drugs targeting the translational apparatus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kressler D, Hurt E, Bassler J . Driving ribosome assembly. Biochim Biophys Acta 2010; 1803: 673–683.

    CAS  PubMed  Google Scholar 

  2. Crocker J, Skilbeck N . Nucleolar organiser region associated proteins in cutaneous melanotic lesions: a quantitative study. J Clin Pathol 1987; 40: 885–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Montanaro L, Trere D, Derenzini M . Nucleolus, ribosomes, and cancer. A J Pathol 2008; 173: 301–310.

    CAS  Google Scholar 

  4. Narla A, Ebert BL . Ribosomopathies: human disorders of ribosome dysfunction. Blood 2010; 115: 3196–3205.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet 2013; 45: 186–190.

    CAS  PubMed  Google Scholar 

  6. Iborra FJ, Jackson DA, Cook PR . Coupled transcription and translation within nuclei of mammalian cells. Science 2001; 293: 1139–1142.

    CAS  PubMed  Google Scholar 

  7. Blagden SP, Willis AE . The biological and therapeutic relevance of mRNA translation in cancer. Nat Rev Clin Oncol 2011; 8: 280–291.

    Article  CAS  PubMed  Google Scholar 

  8. Fasolo A, Sessa C . Targeting mTOR pathways in human malignancies. Curr Pharm Des 2012; 18: 2766–2777.

    CAS  PubMed  Google Scholar 

  9. Ruggero D . Translational control in cancer etiology. Cold Spring Harb Perspect Biol 2012; 5: a012336.

    Google Scholar 

  10. Ramirez-Fort MK, Case EC, Rosen AC, Cerci FB, Wu S, Lacouture ME . Rash to the mTOR inhibitor everolimus: systematic review and meta-analysis. Am J Clin Oncol (doi:10.1097/COC.0b013e318277d62f).

    CAS  PubMed  Google Scholar 

  11. Iorio MV, Croce CM . MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4: 143–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Spizzo R, Almeida MI, Colombatti A, Calin GA . Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 2012; 31: 4577–4587.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pradet-Balade B, Boulme F, Beug H, Mullner EW, Garcia-Sanz JA . Translation control: bridging the gap between genomics and proteomics? Trends Biochem Sci 2001; 26: 225–229.

    CAS  PubMed  Google Scholar 

  14. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J et al. Global quantification of mammalian gene expression control. Nature 2012; 473: 337–342.

    Google Scholar 

  15. Silvera D, Formenti SC, Schneider RJ . Translational control in cancer. Nat Rev Cancer 2011; 10: 254–266.

    Google Scholar 

  16. Sonenberg N, Hinnebusch AG . Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009; 136: 731–745.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stumpf CR, Ruggero D . The cancerous translation apparatus. Curr Opin Genet Dev 2011; 21: 474–483.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Montanaro L, Trere D, Derenzini M . Changes in ribosome biogenesis may induce cancer by down-regulating the cell tumor suppressor potential. Biochim Biophys Acta 2012; 1825: 101–110.

    CAS  PubMed  Google Scholar 

  19. Jackson RJ, Hellen CU, Pestova TV . The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11: 113–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M . The structure of the eukaryotic ribosome at 3.0 A resolution. Science 2012; 334: 1524–1529.

    Google Scholar 

  21. Petrov A, Chen J, O'Leary S, Tsai A, Puglisi JD . Single-molecule analysis of translational dynamics. Cold Spring Harb Perspect Biol 2012; 4: a011551.

    PubMed  PubMed Central  Google Scholar 

  22. Schoenberg DR, Maquat LE . Regulation of cytoplasmic mRNA decay. Nat Rev Genet 2012; 13: 246–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Filipowicz W, Bhattacharyya SN, Sonenberg N . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9: 102–114.

    CAS  PubMed  Google Scholar 

  24. Kervestin S, Jacobson A . NMD: a multifaceted response to premature translational termination. Nat Rev Mol Cell Biol 2012; 13: 700–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Huntzinger E, Izaurralde E . Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genetics 2011; 12: 99–110.

    CAS  PubMed  Google Scholar 

  26. Wu X, Chesoni S, Rondeau G, Tempesta C, Patel R, Charles S et al. Combinatorial mRNA binding by AUF1 and Argonaute 2 controls decay of selected target mRNAs. Nucleic Acids Res 2013; 41: 2644–2658.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang D, Zavadil J, Martin L, Parisi F, Friedman E, Levy D et al. Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis. Mol Cell Biol 2011; 31: 3670–3680.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pichon X, Wilson LA, Stoneley M, Bastide A, King HA, Somers J et al. RNA binding protein/RNA element interactions and the control of translation. Cur Protein Pep Sci 2012; 13: 294–304.

    CAS  Google Scholar 

  29. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011; 471: 467–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pelletier J, Sonenberg N . Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988; 334: 320–325.

    CAS  PubMed  Google Scholar 

  31. Balvay L, Soto Rifo R, Ricci EP, Decimo D, Ohlmann T . Structural and functional diversity of viral IRESes. Biochim Biophys Acta 2009; 1789: 542–557.

    CAS  PubMed  Google Scholar 

  32. Spriggs KA, Stoneley M, Bushell M, Willis AE . Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 2008; 100: 27–38.

    CAS  PubMed  Google Scholar 

  33. Graber TE, Holcik M . Cap-independent regulation of gene expression in apoptosis. Mol Biosyst 2007; 3: 825–834.

    CAS  PubMed  Google Scholar 

  34. Komar AA, Hatzoglou M . Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 2011; 10: 229–240.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Silvera D, Arju R, Darvishian F, Levine PH, Zolfaghari L, Goldberg J et al. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol 2009; 11: 903–908.

    CAS  PubMed  Google Scholar 

  36. Silvera D, Schneider RJ . Inflammatory breast cancer cells are constitutively adapted to hypoxia. Cell Cycle 2009; 8: 3091–3096.

    Article  CAS  PubMed  Google Scholar 

  37. Coldwell MJ, Mitchell SA, Stoneley M, MacFarlane M, Willis AE . Initiation of Apaf-1 translation by internal ribosome entry. Oncogene 2000; 19: 899–905.

    CAS  PubMed  Google Scholar 

  38. Holcik M, Yeh C, Korneluk RG, Chow T . Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene 2000; 19: 4174–4177.

    CAS  PubMed  Google Scholar 

  39. Yoon A, Peng G, Brandenburger Y, Zollo O, Xu W, Rego E et al. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 2006; 312: 902–906.

    CAS  PubMed  Google Scholar 

  40. Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 2008; 456: 971–975.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Blau L, Knirsh R, Ben-Dror I, Oren S, Kuphal S, Hau P et al. Aberrant expression of c-Jun in glioblastoma by internal ribosome entry site (IRES)-mediated translational activation. Proc Natl Acad Sci USA 2012; 109: E2875–E2884.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cobbold LC, Wilson LA, Sawicka K, King HA, Kondrashov AV, Spriggs KA et al. Upregulated c-myc expression in multiple myeloma by internal ribosome entry results from increased interactions with and expression of PTB-1 and YB-1. Oncogene 2010; 29: 2884–2891.

    CAS  PubMed  Google Scholar 

  43. Jopling CL, Spriggs KA, Mitchell SA, Stoneley M, Willis AE . L-Myc protein synthesis is initiated by internal ribosome entry. RNA 2004; 10: 287–298.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bellodi C, Kopmar N, Ruggero D . Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J 2010; 29: 1865–1876.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bellodi C, Krasnykh O, Haynes N, Theodoropoulou M, Peng G, Montanaro L et al. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res 2010; 70: 6026–6035.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lewis SM, Holcik M . IRES in distress: translational regulation of the inhibitor of apoptosis proteins XIAP and HIAP2 during cell stress. Cell Death Differ 2005; 12: 547–553.

    CAS  PubMed  Google Scholar 

  47. Willimott S, Wagner SD . Post-transcriptional and post-translational regulation of Bcl2. Biochem Soc Trans 2010; 38: 1571–1575.

    CAS  PubMed  Google Scholar 

  48. Komar AA, Mazumder B, Merrick WC . A new framework for understanding IRES-mediated translation. Gene 2012; 502: 75–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Baird TD, Wek RC . Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 2012; 3: 307–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hetz C . The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012; 13: 89–102.

    CAS  PubMed  Google Scholar 

  51. Proud CG . eIF2 and the control of cell physiology. Semin Cell Dev Biol 2005; 16: 3–12.

    CAS  PubMed  Google Scholar 

  52. Tabas I, Ron D . Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 2011; 13: 184–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mujtaba T, Dou QP . Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov Med 2012; 12: 471–480.

    Google Scholar 

  54. Dong H, Chen L, Chen X, Gu H, Gao G, Gao Y et al. Dysregulation of unfolded protein response partially underlies proapoptotic activity of bortezomib in multiple myeloma cells. Leuk Lymphoma 2009; 50: 974–984.

    CAS  PubMed  Google Scholar 

  55. Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH . Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006; 107: 4907–4916.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Suh DH, Kim MK, Kim HS, Chung HH, Song YS . Unfolded protein response to autophagy as a promising druggable target for anticancer therapy. Ann N Y Acad Sci 2012; 1271: 20–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ingolia NT, Lareau LF, Weissman JS . Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 2012; 147: 789–802.

    Google Scholar 

  58. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS . Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009; 324: 218–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fabian MR, Sonenberg N, Filipowicz W . Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79: 351–379.

    CAS  PubMed  Google Scholar 

  60. Fabian MR, Sonenberg N . The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 2012; 19: 586–593.

    CAS  PubMed  Google Scholar 

  61. Xu M, Mo YY . The Akt-associated microRNAs. Cell Mol Life Sci 2012; 69: 3601–3612.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nana-Sinkam SP, Croce CM . Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 2013; 93: 98–104.

    CAS  PubMed  Google Scholar 

  63. Gutschner T, Diederichs S . The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 2012; 9: 703–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 2012; 491: 454–457.

    CAS  PubMed  Google Scholar 

  65. Shaw RJ, Cantley LC . Ras, PI(3)K and mTOR signaling controls tumor cell growth. Nature 2006; 441: 424–430.

    CAS  PubMed  Google Scholar 

  66. Proud CG . Signaling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 2007; 403: 217–234.

    CAS  PubMed  Google Scholar 

  67. Proud CG . Regulation of protein synthesis by insulin. Biochem Soc Trans 2006; 34: 213–216.

    CAS  PubMed  Google Scholar 

  68. Wang X, Proud CG . A novel mechanism for the control of translation initiation by amino acids, mediated by phosphorylation of eukaryotic initiation factor 2B. Mol Cell Biol 2008; 28: 1429–1442.

    CAS  PubMed  Google Scholar 

  69. Gallagher JW, Kubica N, Kimball SR, Jefferson LS . Reduced eukaryotic initiation factor 2Bepsilon-subunit expression suppresses the transformed phenotype of cells overexpressing the protein. Cancer Res 2008; 68: 8752–8760.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dalton LE, Healey E, Irving J, Marciniak SJ . Phosphoproteins in stress-induced disease. Prog Mol Biol Transl Sci 2012; 106: 189–221.

    CAS  PubMed  Google Scholar 

  71. Walter P, Ron D . The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011; 334: 1081–1086.

    CAS  PubMed  Google Scholar 

  72. Gallinetti J, Harputlugil E, Mitchell JR . Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 2013; 449: 1–10.

    CAS  PubMed  Google Scholar 

  73. Dabo S, Meurs EF . dsRNA-dependent protein kinase PKR and its Role in stress, signaling and HCV infection. Viruses 2012; 4: 2598–2635.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 2005; 307: 935–939.

    CAS  PubMed  Google Scholar 

  75. Drexler HC . Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors. PLoS One 2009; 4: e4161.

    PubMed  PubMed Central  Google Scholar 

  76. Schewe DM, Aguirre-Ghiso JA . Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res 2009; 69: 1545–1552.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zoncu R, Efeyan A, Sabatini DM . mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21–35.

    CAS  PubMed  Google Scholar 

  78. Petroulakis E, Mamane Y, Le Bacquer O, Shahbazian D, Sonenberg N . mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer 2006; 94: 195–199.

    CAS  PubMed  Google Scholar 

  79. Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 2012; 328: 1172–1176.

    Google Scholar 

  80. Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 2010; 17: 249–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M et al. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res 2012; 72: 6468–6476.

    CAS  PubMed  Google Scholar 

  82. Grosso S, Pesce E, Brina D, Beugnet A, Loreni F, Biffo S . Sensitivity of global translation to mTOR inhibition in REN cells depends on the equilibrium between eIF4E and 4E-BP1. PLoS One 2011; 6: e29136.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 2004; 23: 1761–1769.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Magnuson B, Ekim B, Fingar DC . Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signaling networks. Biochem J 2012; 441: 1–21.

    CAS  PubMed  Google Scholar 

  85. Browne GJ, Proud CG . A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol 2004; 24: 2986–2997.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mayer C, Grummt I . Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 2006; 25: 6384–6391.

    CAS  PubMed  Google Scholar 

  87. Wang X, Beugnet A, Murakami M, Yamanaka S, Proud CG . Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Mol Cell Biol 2005; 25: 2558–2572.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sanvito F, Piatti S, Villa A, Bossi M, Lucchini G, Marchisio PC et al. The beta4 integrin interactor p27(BBP/eIF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly. J Cell Biol 1999; 144: 823–837.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Si K, Maitra U . The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor. Mol Cell Biol 1999; 19: 1416–1426.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gandin V, Miluzio A, Barbieri AM, Beugnet A, Kiyokawa H, Marchisio PC et al. Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature 2008; 455: 684–688.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Diggle TA, Moule SK, Avison MB, Flynn A, Foulstone EJ, Proud CG et al. Both rapamycin-sensitive and -insensitive pathways are involved in the phosphorylation of the initiation factor-4E-binding protein (4E-BP1) in response to insulin in rat epididymal fat-cells. Biochem J 1996; 316 (Pt 2): 447–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Di Nicolantonio F, Arena S, Tabernero J, Grosso S, Molinari F, Macarulla T et al. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest 2010; 120: 2858–2866.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Grosso S, Volta V, Sala LA, Vietri M, Marchisio PC, Ron D et al. PKCbetaII modulates translation independently from mTOR and through RACK1. Biochem J 2008; 415: 77–85.

    CAS  PubMed  Google Scholar 

  94. Gorrini C, Loreni F, Gandin V, Sala LA, Sonenberg N, Marchisio PC et al. Fibronectin controls cap-dependent translation through beta1 integrin and eukaryotic initiation factors 4 and 2 coordinated pathways. Proc Natl Acad Sci USA 2005; 102: 9200–9205.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R . Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 2004; 24: 6539–6549.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A et al. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci USA 2010; 107: 14134–14139.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T et al. Dissecting eIF4E action in tumorigenesis. Genes Dev 2007; 21: 3232–3237.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Parsyan A, Svitkin Y, Shahbazian D, Gkogkas C, Lasko P, Merrick WC et al. mRNA helicases: the tacticians of translational control. Nat Rev Mol Cell Biol 2011; 12: 235–245.

    CAS  PubMed  Google Scholar 

  99. Brina D, Grosso S, Miluzio A, Biffo S . Translational control by 80S formation and 60S availability: the central role of eIF6, a rate limiting factor in cell cycle progression and tumorigenesis. Cell Cycle 2011; 10: 3441–3446.

    CAS  PubMed  Google Scholar 

  100. Sanvito F, Vivoli F, Gambini S, Santambrogio G, Catena M, Viale E et al. Expression of a highly conserved protein, p27BBP, during the progression of human colorectal cancer. Cancer Res 2000; 60: 510–516.

    CAS  PubMed  Google Scholar 

  101. Miluzio A, Beugnet A, Grosso S, Brina D, Mancino M, Campaner S et al. Impairment of cytoplasmic eIF6 activity restricts lymphomagenesis and tumor progression without affecting normal growth. Cancer Cell 2011; 19: 765–775.

    CAS  PubMed  Google Scholar 

  102. Ceci M, Gaviraghi C, Gorrini C, Sala LA, Offenhauser N, Marchisio PC et al. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 2003; 426: 579–584.

    CAS  PubMed  Google Scholar 

  103. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ et al. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 2008; 105: 10762–10767.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wong CC, Traynor D, Basse N, Kay RR, Warren AJ . Defective ribosome assembly in Shwachman-Diamond syndrome. Blood 2011; 118: 4305–4312.

    CAS  PubMed  Google Scholar 

  105. Liu JM, Lipton JM, Mani S . Sixth International Congress on Shwachman-Diamond syndrome: from patients to genes and back. Ann N Y Acad Sci 2011; 1242: 26–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sharma G, Pallesen J, Das S, Grassucci R, Langlois R, Hampton CM et al. Affinity grid-based cryo-EM of PKC binding to RACK1 on the ribosome. J Struct Biol 2013; 181: 190–194.

    CAS  PubMed  Google Scholar 

  107. Gibson TJ . RACK1 research—ships passing in the night? FEBS Lett 2012; 586: 2787–2789.

    CAS  PubMed  Google Scholar 

  108. Ron D, Luo J, Mochly-Rosen D . C2 region-derived peptides inhibit translocation and function of beta protein kinase C in vivo. J Biol Chem 1995; 270: 24180–24187.

    CAS  PubMed  Google Scholar 

  109. Ruan Y, Sun L, Hao Y, Wang L, Xu J, Zhang W et al. Ribosomal RACK1 promotes chemoresistance and growth in human hepatocellular carcinoma. J Clin Invest 2012; 122: 2554–2566.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Podar K, Anderson KC . Emerging therapies targeting tumor vasculature in multiple myeloma and other hematologic and solid malignancies. Curr Cancer Drug Targets 2011; 11: 1005–1024.

    CAS  PubMed  Google Scholar 

  111. Dumstorf CA, Konicek BW, McNulty AM, Parsons SH, Furic L, Sonenberg N et al. Modulation of 4E-BP1 function as a critical determinant of enzastaurin-induced apoptosis. Mol Cancer Ther 2010; 9: 3158–3163.

    CAS  PubMed  Google Scholar 

  112. Dobrikov M, Dobrikova E, Shveygert M, Gromeier M . Phosphorylation of eukaryotic translation initiation factor 4G1 (eIF4G1) by protein kinase C{alpha} regulates eIF4G1 binding to Mnk1. Mol Cell Biol 2011; 31: 2947–2959.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Volta V, Beugnet A, Gallo S, Magri L, Brina D, Pesce E et al. RACK1 depletion in a mouse model causes lethality, pigmentation deficits and reduction in protein synthesis efficiency. Cell Mol Life Sci 2013; 70: 1439–1450.

    CAS  PubMed  Google Scholar 

  114. Ceci M, Welshhans K, Ciotti MT, Brandi R, Parisi C, Paoletti F et al. RACK1 is a ribosome scaffold protein for beta-actin mRNA/ZBP1 complex. PLoS One 2012; 7: e35034.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Otsuka M, Takata A, Yoshikawa T, Kojima K, Kishikawa T, Shibata C et al. Receptor for activated protein kinase C: requirement for efficient microRNA function and reduced expression in hepatocellular carcinoma. PLoS One 2011; 6: e24359.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Jannot G, Bajan S, Giguere NJ, Bouasker S, Banville IH, Piquet S et al. The ribosomal protein RACK1 is required for microRNA function in both C. elegans and humans. EMBO Rep 2011; 12: 581–586.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ruggero D . The role of Myc-induced protein synthesis in cancer. Cancer Res 2009; 69: 8839–8843.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. van Riggelen J, Yetil A, Felsher DW . MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 2010; 10: 301–309.

    CAS  PubMed  Google Scholar 

  119. Devlin JR, Hannan KM, Ng PY, Bywater MJ, Shortt J, Cullinane C et al. AKT signaling is required for ribosomal RNA synthesis and progression of Emu-Myc B-cell lymphoma in vivo. FEBS J (e-pub ahead of print 13 February 2013; doi:10.1111/febs.12135).

    CAS  Google Scholar 

  120. Zhang L, Smit-McBride Z, Pan X, Rheinhardt J, Hershey JW . An oncogenic role for the phosphorylated h-subunit of human translation initiation factor eIF3. J Biol Chem 2008; 283: 24047–24060.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wen F, Zhou R, Shen A, Choi A, Uribe D, Shi J . The tumor suppressive role of eIF3f and its function in translation inhibition and rRNA degradation. PLoS One 2011; 7: e34194.

    Google Scholar 

  122. Daxinger L, Oey H, Apedaile A, Sutton J, Ashe A, Whitelaw E . A forward genetic screen identifies eukaryotic translation initiation factor 3, subunit H (eIF3h), as an enhancer of variegation in the mouse. G3 2012; 2: 1393–1396.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Badura M, Braunstein S, Zavadil J, Schneider RJ . DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs. Proc Natl Acad Sci USA 2012; 109: 18767–18772.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Scuoppo C, Miething C, Lindqvist L, Reyes J, Ruse C, Appelmann I et al. A tumor suppressor network relying on the polyamine-hypusine axis. Nature 2012; 487: 244–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Doerfel LK, Wohlgemuth I, Kothe C, Peske F, Urlaub H, Rodnina MV . EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 2013; 339: 85–88.

    CAS  PubMed  Google Scholar 

  126. Saini P, Eyler DE, Green R, Dever TE . Hypusine-containing protein eIF5A promotes translation elongation. Nature 2009; 459: 118–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Luft F . The rise of a ribosomopathy and increased cancer risk. J Mol Med 2010; 88: 1–3.

    PubMed  Google Scholar 

  128. Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 1998; 19: 32–38.

    CAS  PubMed  Google Scholar 

  129. Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 2003; 299: 259–262.

    CAS  PubMed  Google Scholar 

  130. Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D . The box H+ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev 1998; 12: 527–537.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Montanaro L, Calienni M, Bertoni S, Rocchi L, Sansone P, Storci G et al. Novel dyskerin-mediated mechanism of p53 inactivation through defective mRNA translation. Cancer Res 2010; 70: 4767–4777.

    CAS  PubMed  Google Scholar 

  132. Basu A, Das P, Chaudhuri S, Bevilacqua E, Andrews J, Barik S et al. Requirement of rRNA methylation for 80S ribosome assembly on a cohort of cellular internal ribosome entry sites. Mol Cell Biol 2011; 31: 4482–4499.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Belin S, Beghin A, Solano-Gonzalez E, Bezin L, Brunet-Manquat S, Textoris J et al. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One 2009; 4: e7147.

    PubMed  PubMed Central  Google Scholar 

  134. Kondrashov N, Pusic A, Stumpf CR, Shimizu K, Hsieh AC, Xue S et al. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 2011; 145: 383–397.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Landry DM, Hertz MI, Thompson SR . RPS25 is essential for translation initiation by the Dicistroviridae and hepatitis C viral IRESs. Genes Dev 2009; 23: 2753–2764.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ellis SR, Lipton JM . Diamond Blackfan anemia: a disorder of red blood cell development. Curr Top Dev Biol 2008; 82: 217–241.

    CAS  PubMed  Google Scholar 

  137. Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP, Lipton JM . Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood 2012; 119: 3815–3819.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Gazda HT, Sheen MR, Vlachos A, Choesmel V, O'Donohue MF, Schneider H et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 2008; 83: 769–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Boria I, Quarello P, Avondo F, Garelli E, Aspesi A, Carando A et al. A new database for ribosomal protein genes which are mutated in Diamond-Blackfan Anemia. Hum Mutat 2008; 29: E263–E270.

    PubMed  Google Scholar 

  140. Horos R, Ijspeert H, Pospisilova D, Sendtner R, Andrieu-Soler C, Taskesen E et al. Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood 2012; 119: 262–272.

    CAS  PubMed  Google Scholar 

  141. Anderson SJ, Lauritsen JP, Hartman MG, Foushee AM, Lefebvre JM, Shinton SA et al. Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity 2007; 26: 759–772.

    CAS  PubMed  Google Scholar 

  142. Kirn-Safran CB, Oristian DS, Focht RJ, Parker SG, Vivian JL, Carson DD . Global growth deficiencies in mice lacking the ribosomal protein HIP/RPL29. Dev Dyn 2007; 236: 447–460.

    CAS  PubMed  Google Scholar 

  143. Lam YW, Lamond AI, Mann M, Andersen JS . Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 2007; 17: 749–760.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Robledo S, Idol RA, Crimmins DL, Ladenson JH, Mason PJ, Bessler M . The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA 2008; 14: 1918–1929.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Choesmel V, Bacqueville D, Rouquette J, Noaillac-Depeyre J, Fribourg S, Cretien A et al. Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 2007; 109: 1275–1283.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Flygare J, Aspesi A, Bailey JC, Miyake K, Caffrey JM, Karlsson S et al. Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood 2007; 109: 980–986.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Idol RA, Robledo S, Du HY, Crimmins DL, Wilson DB, Ladenson JH et al. Cells depleted for RPS19, a protein associated with Diamond Blackfan Anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells Mol Dis 2007; 39: 35–43.

    CAS  PubMed  Google Scholar 

  148. Angelini M, Cannata S, Mercaldo V, Gibello L, Santoro C, Dianzani I et al. Missense mutations associated with Diamond-Blackfan anemia affect the assembly of ribosomal protein S19 into the ribosome. Hum Mol Genet 2007; 16: 1720–1727.

    CAS  PubMed  Google Scholar 

  149. Lodish HF . Alpha and beta globin messenger ribonucleic acid. Different amounts and rates of initiation of translation. J Biol Chem 1971; 246: 7131–7138.

    CAS  PubMed  Google Scholar 

  150. Walden WE, Godefroy-Colburn T, Thach RE . The role of mRNA competition in regulating translation. I. Demonstration of competition in vivo. J Biol Chem 1981; 256: 11739–11746.

    CAS  PubMed  Google Scholar 

  151. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A et al. The translational landscape of mTOR signaling steers cancer initiation and metastasis. Nature 2012; 485: 55–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Walden WE, Thach RE . Translational control of gene expression in a normal fibroblast. Characterization of a subclass of mRNAs with unusual kinetic properties. Biochemistry 1986; 25: 2033–2041.

    CAS  PubMed  Google Scholar 

  153. Zinzalla V, Stracka D, Oppliger W, Hall MN . Activation of mTORC2 by association with the ribosome. Cell 2011; 144: 757–768.

    CAS  PubMed  Google Scholar 

  154. Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 2010; 29: 3939–3951.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Payne EM, Virgilio M, Narla A, Sun H, Levine M, Paw BH et al. L-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway. Blood 2012; 120: 2214–2224.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Iadevaia V, Caldarola S, Biondini L, Gismondi A, Karlsson S, Dianzani I et al. PIM1 kinase is destabilized by ribosomal stress causing inhibition of cell cycle progression. Oncogene 2010; 29: 5490–5499.

    CAS  PubMed  Google Scholar 

  157. Danilova N, Sakamoto KM, Lin S . Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 2008; 112: 5228–5237.

    CAS  PubMed  Google Scholar 

  158. Panic L, Montagne J, Cokaric M, Volarevic S . S6-haploinsufficiency activates the p53 tumor suppressor. Cell Cycle 2007; 6: 20–24.

    CAS  PubMed  Google Scholar 

  159. Pestov DG, Strezoska Z, Lau LF . Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 2001; 21: 4246–4255.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Rubbi CP, Milner J . Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 2003; 22: 6068–6077.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J et al. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 2009; 11: 501–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. McGowan KA, Li JZ, Park CY, Beaudry V, Tabor HK, Sabnis AJ et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet 2008; 40: 963–970.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Fumagalli S, Ivanenkov VV, Teng T, Thomas G . Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev 2012; 26: 1028–1040.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Donati G, Montanaro L, Derenzini M . Ribosome biogenesis and control of cell proliferation: p53 is not alone. Cancer Res 2012; 72: 1602–1607.

    CAS  PubMed  Google Scholar 

  165. Torihara H, Uechi T, Chakraborty A, Shinya M, Sakai N, Kenmochi N . Erythropoiesis failure due to RPS19 deficiency is independent of an activated Tp53 response in a zebrafish model of Diamond-Blackfan anaemia. Br J Haematol 2011; 152: 648–654.

    CAS  PubMed  Google Scholar 

  166. Lindstrom MS, Nister M . Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation. PLoS One 2010; 5: e9578.

    PubMed  PubMed Central  Google Scholar 

  167. Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2004; 2: E139.

    PubMed  PubMed Central  Google Scholar 

  168. MacInnes AW, Amsterdam A, Whittaker CA, Hopkins N, Lees JA . Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations. Proc Natl Acad Sci USA 2008; 105: 10408–10413.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008; 451: 335–339.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Barlow JL, Drynan LF, Hewett DR, Holmes LR, Lorenzo-Abalde S, Lane AL et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med 2010; 16: 59–66.

    CAS  PubMed  Google Scholar 

  171. Jadersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Gohring G et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 2011; 29: 1971–1979.

    PubMed  Google Scholar 

  172. Da Costa L, Moniz H, Simansour M, Tchernia G, Mohandas N, Leblanc T . Diamond-Blackfan anemia, ribosome and erythropoiesis. Transfus Clin Biol 2010; 17: 112–119.

    CAS  PubMed  Google Scholar 

  173. Alter BP, Giri N, Savage SA, Rosenberg PS . Cancer in dyskeratosis congenita. Blood 2009; 113: 6549–6557.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Boocock GR, Morrison JA, Popovic M, Richards N, Ellis L, Durie PR et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 2003; 33: 97–101.

    CAS  PubMed  Google Scholar 

  175. Burroughs L, Woolfrey A, Shimamura A . Shwachman-Diamond syndrome: a review of the clinical presentation, molecular pathogenesis, diagnosis, and treatment. Hem Oncol Clin N Am 2009; 23: 233–248.

    Google Scholar 

  176. Ganapathi KA, Shimamura A . Ribosomal dysfunction and inherited marrow failure. Br J Haematol 2008; 141: 376–387.

    CAS  PubMed  Google Scholar 

  177. Ridanpaa M, van Eenennaam H, Pelin K, Chadwick R, Johnson C, Yuan B et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 2001; 104: 195–203.

    CAS  PubMed  Google Scholar 

  178. Taskinen M, Ranki A, Pukkala E, Jeskanen L, Kaitila I, Makitie O . Extended follow-up of the Finnish cartilage-hair hypoplasia cohort confirms high incidence of non-Hodgkin lymphoma and basal cell carcinoma. Am J Med Genet 2008; 146A: 2370–2375.

    PubMed  Google Scholar 

  179. Valdez BC, Henning D, So RB, Dixon J, Dixon MJ . The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc Natl Acad Sci USA 2004; 101: 10709–10714.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those whose work we were unable to cite. This work is supported by grants AIRC IG 2011, AIRC 5 × mille, AICR 13-0045 and Fondazione Buzzi to SB, AIRC IG 10653 to FL, PRIN 20104AE23N to SB and FL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F Loreni or S Biffo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loreni, F., Mancino, M. & Biffo, S. Translation factors and ribosomal proteins control tumor onset and progression: how?. Oncogene 33, 2145–2156 (2014). https://doi.org/10.1038/onc.2013.153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.153

Keywords

This article is cited by

Search

Quick links