Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial–mesenchymal transition

Abstract

The epithelial–mesenchymal transition (EMT) is activated in cancer cells by ZEB1, a member of the zinc finger/homeodomain family of transcriptional repressors. The mucin 1 (MUC1) heterodimeric protein is aberrantly overexpressed in human carcinoma cells. The present studies in breast cancer cells demonstrate that the oncogenic MUC1-C subunit induces expression of ZEB1 by a NF-κB (nuclear factor kappa B) p65-dependent mechanism. MUC1-C occupies the ZEB1 promoter with NF-κB p65 and thereby promotes ZEB1 transcription. In turn, ZEB1 associates with MUC1-C and the ZEB1/MUC1-C complex contributes to the transcriptional suppression of miR-200c, an inducer of epithelial differentiation. The co-ordinate upregulation of ZEB1 and suppression of miR-200c has been linked to the induction of EMT. In concert with the effects of MUC1-C on ZEB1 and miR-200c, we show that MUC1-C induces EMT and cellular invasion by a ZEB1-mediated mechanism. These findings indicate that (i) MUC1-C activates ZEB1 and suppresses miR-200c with the induction of EMT and (ii) targeting MUC1-C could be an effective approach for the treatment of breast and possibly other types of cancers that develop EMT properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  2. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  3. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A . Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONe 2008; 3: e2888.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009; 11: 1487–1495.

    Article  CAS  PubMed  Google Scholar 

  6. Brabletz S, Brabletz T . The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer? EMBO Rep 2010; 11: 670–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 2008; 68: 537–544.

    Article  CAS  PubMed  Google Scholar 

  8. Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 2006; 131: 830–840.

    Article  CAS  PubMed  Google Scholar 

  9. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007; 26: 6979–6988.

    Article  CAS  PubMed  Google Scholar 

  10. Vandewalle C, Van Roy F, Berx G . The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 2009; 66: 773–787.

    Article  CAS  PubMed  Google Scholar 

  11. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9: 582–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kufe D . Mucins in cancer: function, prognosis and therapy. Nat Rev Canc 2009; 9: 874–885.

    Article  CAS  Google Scholar 

  13. Kufe D . MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene 2012; 32: 1073–1081.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Horn G, Gaziel A, Wreschner DH, Smorodinsky NI, Ehrlich M . ERK and PI3K regulate different aspects of the epithelial to mesenchymal transition of mammary tumor cells induced by truncated MUC1. Exp Cell Res 2009; 315: 1490–1504.

    Article  CAS  PubMed  Google Scholar 

  15. Roy LD, Sahraei M, Subramani DB, Besmer D, Nath S, Tinder TL et al. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene 2011; 30: 1449–1459.

    Article  CAS  PubMed  Google Scholar 

  16. Rajabi H, Ahmad R, Jin C, Joshi M, Guha M, Alam M et al. MUC1-C oncoprotein confers androgen-independent growth of human prostate cancer cells. Prostate 2012; 72: 1659–1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahmad R, Raina D, Joshi MD, Kawano T, Kharbanda S, Kufe D . MUC1-C oncoprotein functions as a direct activator of the NF-κB p65 transcription factor. Cancer Res 2009; 69: 7013–7021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren J, Agata N, Chen D, Li Y, Yu W-H, Huang L et al. Human MUC1 carcinoma-associated protein confers resistance to genotoxic anti-cancer agents. Cancer Cell 2004; 5: 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H . NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 2007; 26: 711–724.

    Article  CAS  PubMed  Google Scholar 

  20. Hu X, Janssen WE, Moscinski LC, Bryington M, Dangsupa A, Rezai-Zadeh N et al. An IkappaBalpha inhibitor causes leukemia cell death through a p38 MAP kinase-dependent, NF-kappaB-independent mechanism. Cancer Res 2001; 61: 6290–6296.

    CAS  PubMed  Google Scholar 

  21. Rajabi H, Ahmad R, Jin C, Kosugi M, Alam M, Joshi M et al. MUC1-C oncoprotein induces TCF7L2 activation and promotes cyclin D1 expression in human breast cancer cells. J Biol Chem 2012; 287: 10703–10713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leng Y, Cao C, Ren J, Huang L, Chen D, Ito M et al. Nuclear import of the MUC1-C oncoprotein is mediated by nucleoporin Nup62. J Biol Chem 2007; 282: 19321–19330.

    Article  CAS  PubMed  Google Scholar 

  23. Raina D, Ahmad R, Rajabi H, Panchamoorthy G, Kharbanda S, Kufe D . Targeting cysteine-mediated dimerization of the MUC1-C oncoprotein in human cancer cells. Int J Oncol 2012; 40: 1643–1649.

    CAS  PubMed  Google Scholar 

  24. Massague J . TGFbeta in Cancer. Cell 2008; 134: 215–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Z, Banerjee S, Li Y, Rahman KM, Zhang Y, Sarkar FH . Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res 2006; 66: 2778–2784.

    Article  CAS  PubMed  Google Scholar 

  26. Sanchez-Tillo E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A . beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci USA 2011; 108: 19204–19209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang L, Chen D, Liu D, Yin L, Kharbanda S, Kufe D . MUC1 oncoprotein blocks GSK3β-mediated phosphorylation and degradation of β-catenin. Cancer Res 2005; 65: 10413–10422.

    Article  CAS  PubMed  Google Scholar 

  28. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68: 7846–7854.

    Article  CAS  PubMed  Google Scholar 

  29. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138: 592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer prrx1. Cancer Cell 2012; 22: 709–724.

    Article  CAS  PubMed  Google Scholar 

  31. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 2005; 24: 2375–2385.

    Article  CAS  PubMed  Google Scholar 

  32. Jin C, Rajabi H, Pitroda S, Kharbanda A, Li A, Weichselbaum R et al. Cooperative interaction between the MUC1 oncoprotein and the Rab31 GTPase in human breast cancer cells. PLoS ONE 2012; 7: e39432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahmad R, Rajabi H, Kosugi M, Joshi M, Alam M, Vasir B et al. MUC1-C oncoprotein promotes STAT3 activation in an auto-inductive regulatory loop. Science Signaling 2011; 4: ra9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Q, Carroll JS, Brown M . Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 2005; 19: 631–642.

    Article  CAS  PubMed  Google Scholar 

  35. Panchamoorthy G, Rehan H, Kharbanda A, Ahmad R, Kufe D . A monoclonal antibody against the oncogenic mucin 1 cytoplasmic domain. Hybridoma 2011; 30: 531–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rajabi H, Jin C, Ahmad R, McClary C, Kufe D . Mucin 1 oncoprotein expression is suppressed by the miR-125b oncomir. Genes & Cancer 2010; 1: 62–65.

    Article  CAS  Google Scholar 

  37. Mehrotra S, Languino LR, Raskett CM, Mercurio AM, Dohi T, Altieri DC . IAP regulation of metastasis. Cancer Cell 2010; 17: 53–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under award numbers CA97098 and CA166480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Kufe.

Ethics declarations

Competing interests

Dr D Kufe is a founder of Genus Oncology and holds equity in the company. The remaining authors disclosed no potential conflicts of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajabi, H., Alam, M., Takahashi, H. et al. MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial–mesenchymal transition. Oncogene 33, 1680–1689 (2014). https://doi.org/10.1038/onc.2013.114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.114

Keywords

This article is cited by

Search

Quick links