Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Syntaxin 6-mediated Golgi translocation plays an important role in nuclear functions of EGFR through microtubule-dependent trafficking

Subjects

Abstract

Receptor tyrosine kinases (RTKs) are cell surface receptors that initiate signal cascades in response to ligand stimulation. Abnormal expression and dysregulated intracellular trafficking of RTKs have been shown to be involved in tumorigenesis. Recent evidence shows that these cell surface receptors translocate from cell surface to different cellular compartments, including the Golgi, mitochondria, endoplasmic reticulum (ER) and the nucleus, to regulate physiological and pathological functions. Although some trafficking mechanisms have been resolved, the mechanism of intracellular trafficking from cell surface to the Golgi is not yet completely understood. Here we report a mechanism of Golgi translocation of epidermal growth factor receptor (EGFR) in which EGF-induced EGFR travels to the Golgi via microtubule-dependent movement by interacting with dynein and fuses with the Golgi through syntaxin 6-mediated membrane fusion. We also demonstrate that the microtubule- and syntaxin 6-mediated Golgi translocation of EGFR is necessary for its consequent nuclear translocation and nuclear functions. Thus, together with previous studies, the microtubule- and syntaxin 6-mediated trafficking pathway from cell surface to the Golgi, ER and the nucleus defines a comprehensive trafficking route for EGFR to travel from cell surface to the Golgi and the nucleus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sorkin A, Goh LK . Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 2008; 314: 3093–3106.

    Article  CAS  Google Scholar 

  2. Yarden Y, Shilo BZ . SnapShot: EGFR signaling pathway. Cell 2007; 131: 1018.

    Article  Google Scholar 

  3. Lemmon MA, Schlessinger J . Cell signaling by receptor tyrosine kinases. Cell 2010; 141: 1117–1134.

    Article  CAS  Google Scholar 

  4. Gschwind A, Fischer OM, Ullrich A . The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 2004; 4: 361–370.

    Article  CAS  Google Scholar 

  5. Mittar S, Ulyatt C, Howell GJ, Bruns AF, Zachary I, Walker JH et al. VEGFR1 receptor tyrosine kinase localization to the Golgi apparatus is calcium-dependent. Exp Cell Res 2009; 315: 877–889.

    Article  CAS  Google Scholar 

  6. Kermorgant S, Parker PJ . Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. J Cell Biol 2008; 182: 855–863.

    Article  CAS  Google Scholar 

  7. Akgoz M, Kalyanaraman V, Gautam N . Receptor-mediated reversible translocation of the G protein betagamma complex from the plasma membrane to the Golgi complex. J Biol Chem 2004; 279: 51541–51544.

    Article  CAS  Google Scholar 

  8. Robertson BJ, Park RD, Snider MD . Role of vesicular traffic in the transport of surface transferrin receptor to the Golgi complex in cultured human cells. Arch Biochem Biophys 1992; 292: 190–198.

    Article  CAS  Google Scholar 

  9. Wang YN, Wang H, Yamaguchi H, Lee HJ, Lee HH, Hung MC . COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochem Biophys Res Commun 2010; 399: 498–504.

    Article  CAS  Google Scholar 

  10. Demory ML, Boerner JL, Davidson R, Faust W, Miyake T, Lee I et al. Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem 2009; 284: 36592–36604.

    Article  CAS  Google Scholar 

  11. Cao X, Zhu H, Ali-Osman F, Lo HW . EGFR and EGFRvIII undergo stress- and EGFR kinase inhibitor-induced mitochondrial translocalization: a potential mechanism of EGFR-driven antagonism of apoptosis. Mol Cancer 2011; 10: 26.

    Article  CAS  Google Scholar 

  12. Sehat B, Tofigh A, Lin Y, Trocme E, Liljedahl U, Lagergren J et al. SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal 2010; 3: ra10.

    Article  Google Scholar 

  13. Feng Y, Venema VJ, Venema RC, Tsai N, Caldwell RB . VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochem Biophys Res Commun 1999; 256: 192–197.

    Article  CAS  Google Scholar 

  14. Stachowiak MK, Maher PA, Joy A, Mordechai E, Stachowiak EK . Nuclear localization of functional FGF receptor 1 in human astrocytes suggests a novel mechanism for growth factor action. Brain Res Mol Brain Res 1996; 38: 161–165.

    Article  CAS  Google Scholar 

  15. Marti U, Burwen SJ, Wells A, Barker ME, Huling S, Feren AM et al. Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology 1991; 13: 15–20.

    Article  CAS  Google Scholar 

  16. Wang SC, Hung MC . Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin Cancer Res 2009; 15: 6484–6489.

    Article  CAS  Google Scholar 

  17. Hanada N, Lo HW, Day CP, Pan Y, Nakajima Y, Hung MC . Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinogen 2006; 45: 10–17.

    Article  CAS  Google Scholar 

  18. Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 2001; 3: 802–808.

    Article  CAS  Google Scholar 

  19. Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, Wei Y et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 2005; 7: 575–589.

    Article  CAS  Google Scholar 

  20. Ni CY, Murphy MP, Golde TE, Carpenter G . gamma -Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 2001; 294: 2179–2181.

    Article  CAS  Google Scholar 

  21. Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z et al. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 2004; 6: 251–261.

    Article  CAS  Google Scholar 

  22. Xie Y, Hung MC . Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochem Biophys Res Commun 1994; 203: 1589–1598.

    Article  CAS  Google Scholar 

  23. Wang SC, Nakajima Y, Yu YL, Xia W, Chen CT, Yang CC et al. Tyrosine phosphorylation controls PCNA function through protein stability. Nat Cell Biol 2006; 8: 1359–1368.

    Article  CAS  Google Scholar 

  24. Das AK, Chen BP, Story MD, Sato M, Minna JD, Chen DJ et al. Somatic mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) abrogate EGFR-mediated radioprotection in non-small cell lung carcinoma. Cancer Res 2007; 67: 5267–5274.

    Article  CAS  Google Scholar 

  25. Chen DJ, Nirodi CS . The epidermal growth factor receptor: a role in repair of radiation-induced DNA damage. Clin Cancer Res 2007; 13 (Part 1): 6555–6560.

    Article  CAS  Google Scholar 

  26. Dittmann KH, Mayer C, Ohneseit PA, Raju U, Andratschke NH, Milas L et al. Celecoxib induced tumor cell radiosensitization by inhibiting radiation induced nuclear EGFR transport and DNA-repair: a COX-2 independent mechanism. Int J Radiat Oncol Biol Phys 2008; 70: 203–212.

    Article  CAS  Google Scholar 

  27. Hsu SC, Miller SA, Wang Y, Hung MC . Nuclear EGFR is required for cisplatin resistance and DNA repair. Am J Transl Res 2009; 1: 249–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL . Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 2009; 28: 3801–3813.

    Article  CAS  Google Scholar 

  29. Chen YJ, Huang WC, Wei YL, Hsu SC, Yuan P, Lin HY et al. Elevated BCRP/ABCG2 expression confers acquired resistance to gefitinib in wild-type EGFR-expressing cells. PLoS One 2011; 6: e21428.

    Article  CAS  Google Scholar 

  30. Huang WC, Chen YJ, Li LY, Wei YL, Hsu SC, Tsai SL et al. Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. J Biol Chem 2011; 286: 20558–20568.

    Article  CAS  Google Scholar 

  31. Li LY, Chen H, Hsieh YH, Wang YN, Chu HJ, Chen YH et al. Nuclear ErbB2 enhances translation and cell growth by activating transcription of ribosomal RNA genes. Cancer Res 2011; 71: 4269–4279.

    Article  CAS  Google Scholar 

  32. Giri DK, Ali-Seyed M, Li LY, Lee DF, Ling P, Bartholomeusz G et al. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol 2005; 25: 11005–11018.

    Article  CAS  Google Scholar 

  33. Lo HW, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu SC, Hung MC . Nuclear–cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J Cell Biochem 2006; 98: 1570–1583.

    Article  CAS  Google Scholar 

  34. Wang YN, Yamaguchi H, Huo L, Du Y, Lee HJ, Lee HH et al. The translocon Sec61beta localized in the inner nuclear membrane transports membrane-embedded EGF receptor to the nucleus. J Biol Chem 2010; 285: 38720–38729.

    Article  CAS  Google Scholar 

  35. Allan VJ, Schroer TA . Membrane motors. Curr Opin Cell Biol 1999; 11: 476–482.

    Article  CAS  Google Scholar 

  36. Cole NB, Lippincott-Schwartz J . Organization of organelles and membrane traffic by microtubules. Curr Opin Cell Biol 1995; 7: 55–64.

    Article  CAS  Google Scholar 

  37. Gao YS, Hubbert CC, Yao TP . The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J Biol Chem 2010; 285: 11219–11226.

    Article  CAS  Google Scholar 

  38. Deribe YL, Wild P, Chandrashaker A, Curak J, Schmidt MH, Kalaidzidis Y et al. Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci Signal 2009; 2: ra84.

    PubMed  Google Scholar 

  39. Carpenter G, Liao HJ . Trafficking of receptor tyrosine kinases to the nucleus. Exp Cell Res 2009; 315: 1556–1566.

    Article  CAS  Google Scholar 

  40. Wang YN, Yamaguchi H, Hsu JM, Hung MC . Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene 2010; 29: 3997–4006.

    Article  CAS  Google Scholar 

  41. Martens S, McMahon HT . Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 2008; 9: 543–556.

    Article  CAS  Google Scholar 

  42. Jahn R, Scheller RH . SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 2006; 7: 631–643.

    Article  CAS  Google Scholar 

  43. Kabayama H, Tokushige N, Takeuchi M, Mikoshiba K . Syntaxin 6 regulates nerve growth factor-dependent neurite outgrowth. Neurosci Lett 2008; 436: 340–344.

    Article  CAS  Google Scholar 

  44. Liao HJ, Carpenter G . Role of the Sec61 translocon in EGF receptor trafficking to the nucleus and gene expression. Mol Biol Cell 2007; 18: 1064–1072.

    Article  CAS  Google Scholar 

  45. Fourest-Lieuvin A, Peris L, Gache V, Garcia-Saez I, Juillan-Binard C, Lantez V et al. Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol Biol Cell 2006; 17: 1041–1050.

    Article  CAS  Google Scholar 

  46. Ookata K, Hisanaga S, Sugita M, Okuyama A, Murofushi H, Kitazawa H et al. MAP4 is the in vivo substrate for CDC2 kinase in HeLa cells: identification of an M-phase specific and a cell cycle-independent phosphorylation site in MAP4. Biochemistry 1997; 36: 15873–15883.

    Article  CAS  Google Scholar 

  47. Setou M, Nakagawa T, Seog DH, Hirokawa N . Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 2000; 288: 1796–1802.

    Article  CAS  Google Scholar 

  48. Heisler FF, Loebrich S, Pechmann Y, Maier N, Zivkovic AR, Tokito M et al. Muskelin regulates actin filament- and microtubule-based GABA(A) receptor transport in neurons. Neuron 2011; 70: 66–81.

    Article  CAS  Google Scholar 

  49. Sadowski L, Pilecka I, Miaczynska M . Signaling from endosomes: location makes a difference. Exp Cell Res 2009; 315: 1601–1609.

    Article  CAS  Google Scholar 

  50. Caviston JP, Holzbaur EL . Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 2006; 16: 530–537.

    Article  CAS  Google Scholar 

  51. Kamio T, Shigematsu K, Sou H, Kawai K, Tsuchiyama H . Immunohistochemical expression of epidermal growth factor receptors in human adrenocortical carcinoma. Hum Pathol 1990; 21: 277–282.

    Article  CAS  Google Scholar 

  52. Lo HW, Hung MC . Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 2006; 94: 184–188.

    Article  CAS  Google Scholar 

  53. Dittmann K, Mayer C, Rodemann HP . Nuclear EGFR as novel therapeutic target: insights into nuclear translocation and function. Strahlenther Onkol 2010; 186: 1–6.

    Article  Google Scholar 

  54. Bryant DM, Wylie FG, Stow JL . Regulation of endocytosis, nuclear translocation, and signaling of fibroblast growth factor receptor 1 by E-cadherin. Mol Biol Cell 2005; 16: 14–23.

    Article  CAS  Google Scholar 

  55. Hsu SC, Hung MC . Characterization of a novel tripartite nuclear localization sequence in the EGFR family. J Biol Chem 2007; 282: 10432–10440.

    Article  CAS  Google Scholar 

  56. Reilly JF, Maher PA . Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol 2001; 152: 1307–1312.

    Article  CAS  Google Scholar 

  57. Offterdinger M, Schofer C, Weipoltshammer K, Grunt TW . c-erbB-3: a nuclear protein in mammary epithelial cells. J Cell Biol 2002; 157: 929–939.

    Article  CAS  Google Scholar 

  58. Srinivasan R, Gillett CE, Barnes DM, Gullick WJ . Nuclear expression of the c-erbB-4/HER-4 growth factor receptor in invasive breast cancers. Cancer Res 2000; 60: 1483–1487.

    CAS  PubMed  Google Scholar 

  59. Johannes L, Popoff V . Tracing the retrograde route in protein trafficking. Cell 2008; 135: 1175–1187.

    Article  CAS  Google Scholar 

  60. Boerner JL, Demory ML, Silva C, Parsons SJ . Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Cell Biol 2004; 24: 7059–7071.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr B Storrie (University of Arkansas for Medical Sciences) for providing the GalNac T2-GFP plasmid. This study was partially supported by the following grants: National Institutes of Health Grants CA109311 and CA099031 (to MC Hung); Cancer Research Center of Excellence (D0H101-TD-C-111-005, Taiwan); Private University Grant (NSC99-2632-B-039-001-MY3, Taiwan); Program for Stem Cell and Regenerative Medicine Frontier Research (NSC100-2321-B-039-002, Taiwan); International Research-Intensive Centers of Excellence in Taiwan (NSC101-2911-I-002-303, Taiwan); The University of Texas MD Anderson–China Medical University and Hospital Sister Institution Fund; National Institutes of Health through MD Anderson’s Cancer Center Support Grant and the Center for Biological Pathways (CA016672); Patel Memorial Breast Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-C Hung.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Y., Shen, J., Hsu, J. et al. Syntaxin 6-mediated Golgi translocation plays an important role in nuclear functions of EGFR through microtubule-dependent trafficking. Oncogene 33, 756–770 (2014). https://doi.org/10.1038/onc.2013.1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.1

Keywords

This article is cited by

Search

Quick links