Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

P21-activated kinase 4 (PAK4) is required for metaphase spindle positioning and anchoring

Abstract

The oncogenic kinase PAK4 was recently found to be involved in the regulation of the G1 phase and the G2/M transition of the cell cycle. We have also identified that PAK4 regulates Ran GTPase activity during mitosis. Here, we show that after entering mitosis, PAK4-depleted cells maintain a prolonged metaphase-like state. In these cells, chromosome congression to the metaphase plate occurs with normal kinetics but is followed by an extended period during which membrane blebbing and spindle rotation are observed. These bipolar PAK4-depleted metaphase-like spindles have a defective astral microtubule (MT) network and are not centered in the cell but are in close contact with the cell cortex. As the metaphase-like state persists, centrosome fragmentation occurs, chromosomes scatter from the metaphase plate and move toward the spindle poles with an active spindle assembly checkpoint, a phenotype that is reminiscent of cohesion fatigue. PAK4 also regulates the acto-myosin cytoskeleton and we report that PAK4 depletion results in the induction of cortical membrane blebbing during prometaphase arrest. However, we show that membrane blebs, which are strongly enriched in phospho-cofilin, are not responsible for the poor anchoring of the spindle. As PAK4 depletion interferes with the localization of components of the dynein/dynactin complexes at the kinetochores and on the astral MTs, we propose that loss of PAK4 could induce a change in the activities of motor proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

PAK4:

p21-activated kinase 4

MT:

microtubules

KT:

kinetochore

SAC:

spindle assembly checkpoint.

References

  1. Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J et al. p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 2002; 3: 767–773.

    Article  CAS  Google Scholar 

  2. Zhao ZS, Lim JP, Ng YW, Lim L, Manser E . The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell 2005; 20: 237–249.

    Article  CAS  Google Scholar 

  3. Maroto B, Ye MB, von Lohneysen K, Schnelzer A, Knaus UG . P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene 2008; 27: 4900–4908.

    Article  CAS  Google Scholar 

  4. Whale A, Hashim FN, Fram S, Jones GE, Wells CM . Signalling to cancer cell invasion through PAK family kinases. Front Biosci [Review] 2011; 16: 849–864.

    Article  CAS  Google Scholar 

  5. Callow MG, Clairvoyant F, Zhu S, Schryver B, Whyte DB, Bischoff JR et al. Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem 2002; 277: 550–558.

    Article  CAS  Google Scholar 

  6. Liu Y, Xiao H, Tian Y, Nekrasova T, Hao X, Lee HJ et al. The pak4 protein kinase plays a key role in cell survival and tumorigenesis in athymic mice. Mol Cancer Res 2008; 6: 1215–1224.

    Article  CAS  Google Scholar 

  7. Nekrasova T, Minden A . PAK4 is required for regulation of the cell-cycle regulatory protein p21, and for control of cell-cycle progression. J Cell Biochem 2011; 112: 1795–1806.

    Article  CAS  Google Scholar 

  8. Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N . Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol 2010; 190: 807–822.

    Article  CAS  Google Scholar 

  9. Qu J, Cammarano MS, Shi Q, Ha KC, de Lanerolle P, Minden A . Activated PAK4 regulates cell adhesion and anchorage-independent growth. Mol Cell Biol 2001; 21: 3523–3533.

    Article  CAS  Google Scholar 

  10. Li Z, Lock JG, Olofsson H, Kowalewski JM, Teller S, Liu Y et al. Integrin-mediated cell attachment induces a PAK4-dependent feedback loop regulating cell adhesion through modified integrin alpha v beta 5 clustering and turnover. Mol Biol Cell 2010; 21: 3317–3329.

    Article  CAS  Google Scholar 

  11. Li Z, Zhang H, Lundin L, Thullberg M, Liu Y, Wang Y et al. p21-activated kinase 4 phosphorylation of integrin beta5 Ser-759 and Ser-762 regulates cell migration. J Biol Chem 2010; 285: 23699–23710.

    Article  CAS  Google Scholar 

  12. Wong LE, Reynolds AB, Dissanayaka NT, Minden A . p120-catenin is a binding partner and substrate for Group B Pak kinases. J Cell Biochem 2010; 110: 1244–1254.

    Article  CAS  Google Scholar 

  13. Ahmed T, Shea K, Masters JR, Jones GE, Wells CM . A PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of HGF. Cell Signal 2008; 20: 1320–1328.

    Article  CAS  Google Scholar 

  14. Cau J, Faure S, Comps M, Delsert C, Morin N . A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization. J Cell Biol 2001; 155: 1029–1042.

    Article  CAS  Google Scholar 

  15. Kobayashi T, Murayama T . Cell cycle-dependent microtubule-based dynamic transport of cytoplasmic dynein in mammalian cells. PLoS One 2009; 4: e7827.

    Article  Google Scholar 

  16. Echeverri CJ, Paschal BM, Vaughan KT, Vallee RB . Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J Cell Biol 1996; 132: 617–633.

    Article  CAS  Google Scholar 

  17. Zhou T, Zimmerman W, Liu X, Erikson RL . A mammalian NudC-like protein essential for dynein stability and cell viability. Proc Natl Acad Sci USA 2006; 103: 9039–9044.

    Article  CAS  Google Scholar 

  18. Ozaki Y, Matsui H, Nagamachi A, Asou H, Aki D, Inaba T . The dynactin complex maintains the integrity of metaphasic centrosomes to ensure transition to anaphase. J Biol Chem 2011; 286: 5589–5598.

    Article  CAS  Google Scholar 

  19. Gassmann R, Holland AJ, Varma D, Wan X, Civril F, Cleveland DW et al. Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev 2010; 24: 957–971.

    Article  CAS  Google Scholar 

  20. Famulski JK, Vos LJ, Rattner JB, Chan GK . Dynein/Dynactin-mediated transport of kinetochore components off kinetochores and onto spindle poles induced by nordihydroguaiaretic acid. PloS One 2011; 6: e16494.

    Article  CAS  Google Scholar 

  21. Gehmlich K, Haren L, Merdes A . Cyclin B degradation leads to NuMA release from dynein/dynactin and from spindle poles. EMBO Rep 2004; 5: 97–103.

    Article  CAS  Google Scholar 

  22. Sharp DJ, Rogers GC, Scholey JM . Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat Cell Biol 2000; 2: 922–930.

    Article  CAS  Google Scholar 

  23. Yang Z, Tulu US, Wadsworth P, Rieder CL . Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr Biol 2007; 17: 973–980.

    Article  CAS  Google Scholar 

  24. Whyte J, Bader JR, Tauhata SB, Raycroft M, Hornick J, Pfister KK et al. Phosphorylation regulates targeting of cytoplasmic dynein to kinetochores during mitosis. J Cell Biol 2008; 183: 819–834.

    Article  CAS  Google Scholar 

  25. Gundersen GG, Gomes ER, Wen Y . Cortical control of microtubule stability and polarization [review]. Curr Opin Cell Biol 2004; 16: 106–112.

    Article  CAS  Google Scholar 

  26. Pearson CG, Bloom K . Dynamic microtubules lead the way for spindle positioning. Nat Rev Mol Cell Biol 2004; 5: 481–492.

    Article  CAS  Google Scholar 

  27. Carminati JL, Stearns T . Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Cell Biol 1997; 138: 629–641.

    Article  CAS  Google Scholar 

  28. Busson S, Dujardin D, Moreau A, Dompierre J, De Mey JR . Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr Biol 1998; 8: 541–544.

    Article  CAS  Google Scholar 

  29. O'Connell CB, Wang YL . Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol Biol Cell 2000; 11: 1765–1774.

    Article  CAS  Google Scholar 

  30. Charras G, Paluch E . Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 2008; 9: 730–736.

    Article  CAS  Google Scholar 

  31. Kaji N, Muramoto A, Mizuno K . LIM kinase-mediated cofilin phosphorylation during mitosis is required for precise spindle positioning. J Biol Chem 2008; 283: 4983–4992.

    Article  CAS  Google Scholar 

  32. Dan C, Kelly A, Bernard O, Minden A . Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem 2001; 276: 32115–32121.

    Article  CAS  Google Scholar 

  33. Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B et al. Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J 2005; 24: 473–486.

    Article  CAS  Google Scholar 

  34. Bright MD, Frankel G . PAK4 phosphorylates myosin regulatory light chain and contributes to Fcgamma receptor-mediated phagocytosis. Int J Biochem Cell Biol 2011; 43: 1776–1781.

    Article  CAS  Google Scholar 

  35. Yanase Y, Carvou N, Frohman MA, Cockcroft S . Reversible bleb formation in mast cells stimulated with antigen is Ca2+/calmodulin-dependent and bleb size is regulated by ARF6. Biochem J 2010; 425: 179–193.

    Article  CAS  Google Scholar 

  36. Norman L, Sengupta K, Aranda-Espinoza H . Blebbing dynamics during endothelial cell spreading. Eur J Cell Biol 2011; 90: 37–48.

    Article  CAS  Google Scholar 

  37. Musacchio A, Salmon ED . The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2007; 8: 379–393.

    Article  CAS  Google Scholar 

  38. Chew TL, Masaracchia RA, Goeckeler ZM, Wysolmerski RB . Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (gamma-PAK). J Muscle Res Cell Motil 1998; 19: 839–854.

    Article  CAS  Google Scholar 

  39. Kiosses WB, Daniels RH, Otey C, Bokoch GM, Schwartz MA . A role for p21-activated kinase in endothelial cell migration. J Cell Biol 1999; 147: 831–844.

    Article  CAS  Google Scholar 

  40. Brzeska H, Szczepanowska J, Matsumura F, Korn ED . Rac-induced increase of phosphorylation of myosin regulatory light chain in HeLa cells. Cell Motil Cytoskeleton 2004; 58: 186–199.

    Article  CAS  Google Scholar 

  41. Sanders LC, Matsumura F, Bokoch GM, de Lanerolle P . Inhibition of myosin light chain kinase by p21-activated kinase. Science 1999; 283: 2083–2085.

    Article  CAS  Google Scholar 

  42. Goeckeler ZM, Masaracchia RA, Zeng Q, Chew TL, Gallagher P, Wysolmerski RB . Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2. J Biol Chem 2000; 275: 18366–18374.

    Article  CAS  Google Scholar 

  43. Mannherz HG, Gonsior SM, Gremm D, Wu X, Pope BJ, Weeds AG . Activated cofilin colocalises with Arp2/3 complex in apoptotic blebs during programmed cell death. Eur J Cell Biol 2005; 84: 503–515.

    Article  CAS  Google Scholar 

  44. Charras GT, Hu CK, Coughlin M, Mitchison TJ . Reassembly of contractile actin cortex in cell blebs. J Cell Biol 2006; 175: 477–490.

    Article  CAS  Google Scholar 

  45. Toyoshima F, Matsumura S, Morimoto H, Mitsushima M, Nishida E . PtdIns(3,4,5)P3 regulates spindle orientation in adherent cells. Dev Cell 2007; 13: 796–811.

    Article  CAS  Google Scholar 

  46. Mitsushima M, Toyoshima F, Nishida E . Dual role of Cdc42 in spindle orientation control of adherent cells. Mol Cell Biol 2009; 29: 2816–2827.

    Article  CAS  Google Scholar 

  47. Zimmerman W, Doxsey SJ . Construction of centrosomes and spindle poles by molecular motor-driven assembly of protein particles. Traffic 2000; 1: 927–934.

    CAS  PubMed  Google Scholar 

  48. Dammermann A, Merdes A . Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 2002; 159: 255–266.

    Article  CAS  Google Scholar 

  49. Goshima G, Nedelec F, Vale RD . Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J Cell Biol 2005; 171: 229–240.

    Article  CAS  Google Scholar 

  50. Stevens D, Gassmann R, Oegema K, Desai A . Uncoordinated loss of chromatid cohesion is a common outcome of extended metaphase arrest. PloS One 2011; 6: e22969.

    Article  CAS  Google Scholar 

  51. Daum JR, Potapova TA, Sivakumar S, Daniel JJ, Flynn JN, Rankin S et al. Cohesion fatigue induces chromatid separation in cells delayed at metaphase. Curr Biol 2011; 21: 1018–1024.

    Article  CAS  Google Scholar 

  52. Menzel N, Schneeberger D, Raabe T . The Drosophila p21 activated kinase Mbt regulates the actin cytoskeleton and adherens junctions to control photoreceptor cell morphogenesis. Mech Dev 2007; 124: 78–90.

    Article  CAS  Google Scholar 

  53. Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K . Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 2001; 104: 95–106.

    Article  CAS  Google Scholar 

  54. Di Fiore B, Ciciarello M, Mangiacasale R, Palena A, Tassin AM, Cundari E et al. Mammalian RanBP1 regulates centrosome cohesion during mitosis. J Cell Sci 2003; 116 (Part 16): 3399–3411.

    Article  CAS  Google Scholar 

  55. Ciciarello M, Mangiacasale R, Thibier C, Guarguaglini G, Marchetti E, Di Fiore B et al. Importin beta is transported to spindle poles during mitosis and regulates Ran-dependent spindle assembly factors in mammalian cells. J Cell Sci 2004; 117 (Part 26): 6511–6522.

    Article  CAS  Google Scholar 

  56. Wang W, Budhu A, Forgues M, Wang XW . Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Nat Cell Biol 2005; 7: 823–830.

    Article  CAS  Google Scholar 

  57. Kalab P, Pralle A, Isacoff EY, Heald R, Weis K . Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 2006; 440: 697–701.

    Article  CAS  Google Scholar 

  58. Fan S, Fogg V, Wang Q, Chen XW, Liu CJ, Margolis B . A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin beta interactions. J Cell Biol 2007; 178: 387–398.

    Article  CAS  Google Scholar 

  59. Dasso M . Ran at kinetochores. Biochem Soc Trans 2006; 34 (Part 5): 711–715.

    Article  CAS  Google Scholar 

  60. Wong J, Fang G . HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J Cell Biol 2006; 173: 879–891.

    Article  CAS  Google Scholar 

  61. Sillje HH, Nagel S, Korner R, Nigg EA . HURP is a Ran-importin beta-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol 2006; 16: 731–742.

    Article  CAS  Google Scholar 

  62. Vigneron S, Brioudes E, Burgess A, Labbe JC, Lorca T, Castro A . Greatwall maintains mitosis through regulation of PP2A. EMBO J 2009; 28: 2786–2793.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Lorca, Castro, Merdes for the gift of reagents. We are indebted to Dr A Desai, Dr K Vaughan and Dr A Musacchio for the kind gifts of reagents. We want to especially thank Dr Dan Fisher (IGMM, UMR5535 CNRS, Montpellier, France) for critical reading and editing of the manuscript. We thank the Montpellier RIO imaging facility. GB is supported by a grant from ‘Fondation de la Recherche Médicale’. This work was supported by a grant MEGAPAK to NM from the ANR (Agence Nationale pour la Recherche) GENOPAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Morin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bompard, G., Rabeharivelo, G., Cau, J. et al. P21-activated kinase 4 (PAK4) is required for metaphase spindle positioning and anchoring. Oncogene 32, 910–919 (2013). https://doi.org/10.1038/onc.2012.98

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.98

Keywords

This article is cited by

Search

Quick links