Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The chemotherapeutic agent paclitaxel inhibits autophagy through two distinct mechanisms that regulate apoptosis

Abstract

Anti-mitotic agents such as paclitaxel and docetaxel are widely used for the treatment of breast, ovarian and lung cancers. Although paclitaxel induces apoptosis, this drug also modulates autophagy. How autophagy affects paclitaxel activity, is unclear. We discovered that paclitaxel inhibited autophagy through two distinct mechanisms dependent on cell cycle stage. In mitotic cells, paclitaxel blocked activation of the class III phosphatidyl inositol 3 kinase, Vps34, a critical initiator of autophagosome formation. In non-mitotic paclitaxel-treated cells, autophagosomes were generated but their movement and maturation was inhibited. Chemically or genetically blocking autophagosome formation diminished paclitaxel-induced cell death suggesting that autophagosome accumulation sensitized cells to paclitaxel toxicity. In line with these observations, we identified that primary breast tumors that expressed diminished levels of autophagy-initiating genes were resistant to taxane therapy, identifying possible mechanisms and prognostic markers of clinical chemotherapeutic resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Jordan MA, Wilson L . Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4: 253–265.

    Article  CAS  PubMed  Google Scholar 

  2. Jordan MA, Toso RJ, Thrower D, Wilson L . Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA 1993; 90: 9552–9556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Craik AC, Veldhoen RA, Czernick M, Buckland TW, Kyselytzia K, Ghosh S et al. The BH3-only protein Bad confers breast cancer taxane sensitivity through a nonapoptotic mechanism. Oncogene 2010; 29: 5381–5391.

    Article  CAS  PubMed  Google Scholar 

  4. Shi J, Orth JD, Mitchison T . Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res 2008; 68: 3269–3276.

    Article  CAS  PubMed  Google Scholar 

  5. Gorka M, Daniewski WM, Gajkowska B, Lusakowska E, Godlewski MM, Motyl T . Autophagy is the dominant type of programmed cell death in breast cancer MCF-7 cells exposed to AGS 115 and EFDAC, new sesquiterpene analogs of paclitaxel. Anticancer Drugs 2005; 16: 777–788.

    Article  CAS  PubMed  Google Scholar 

  6. Levine B, Sinha S, Kroemer G . Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 2008; 4: 600–606.

    Article  CAS  PubMed  Google Scholar 

  7. Mizushima N, Klionsky DJ . Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 2007; 27: 19–40.

    Article  CAS  PubMed  Google Scholar 

  8. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004; 6: 1221–1228.

    Article  CAS  PubMed  Google Scholar 

  9. Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A . Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 2008; 68: 1485–1494.

    Article  CAS  PubMed  Google Scholar 

  10. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 2001; 61: 439–444.

    CAS  PubMed  Google Scholar 

  11. Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 1996; 17: 1595–1607.

    Article  CAS  PubMed  Google Scholar 

  12. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y . Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 1991; 266: 17707–17712.

    CAS  PubMed  Google Scholar 

  13. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E . Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 2005; 1: 84–91.

    Article  CAS  PubMed  Google Scholar 

  14. Blajeski AL, Kottke TJ, Kaufmann SH . A multistep model for paclitaxel-induced apoptosis in human breast cancer cell lines. Exp Cell Res 2001; 270: 277–288.

    Article  CAS  PubMed  Google Scholar 

  15. Gascoigne KE, Taylor SS . Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 2008; 14: 111–122.

    Article  CAS  PubMed  Google Scholar 

  16. Furuya T, Kim M, Lipinski M, Li J, Kim D, Lu T et al. Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 2010; 38: 500–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 2003; 362: 362–369.

    Article  CAS  PubMed  Google Scholar 

  18. Xi G, Hu X, Wu B, Jiang H, Young CY, Pang Y et al. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Lett 2011; 307: 141–148.

    Article  CAS  PubMed  Google Scholar 

  19. Arstila AU, Nuuja IJ, Trump BF . Studies on cellular autophagocytosis. Vinblastine-induced autophagy in the rat liver. Exp Cell Res 1974; 87: 249–252.

    Article  CAS  PubMed  Google Scholar 

  20. Marzella L, Sandberg PO, Glaumann H . Autophagic degradation in rat liver after vinblastine treatment. Exp Cell Res 1980; 128: 291–301.

    Article  CAS  PubMed  Google Scholar 

  21. Pfeifer U . Inhibition by insulin of the formation of autophagic vacuoles in rat liver. A morphometric approach to the kinetics of intracellular degradation by autophagy. J Cell Biol 1978; 78: 152–167.

    Article  CAS  PubMed  Google Scholar 

  22. Mortimore GE, Poso AR . Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 1987; 7: 539–564.

    Article  CAS  PubMed  Google Scholar 

  23. Xie R, Nguyen S, McKeehan WL, Liu L . Acetylated microtubules are required for fusion of autophagosomes with lysosomes. BMC Cell Biol 2010; 11: 89.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fass E, Shvets E, Degani I, Hirschberg K, Elazar Z . Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem 2006; 281: 36303–36316.

    Article  CAS  PubMed  Google Scholar 

  25. Kochl R, Hu XW, Chan EY, Tooze SA . Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 2006; 7: 129–145.

    Article  CAS  PubMed  Google Scholar 

  26. Liu L, Xie R, Nguyen S, Ye M, McKeehan WL . Robust autophagy/mitophagy persists during mitosis. Cell Cycle 2009; 8: 1616–1620.

    Article  CAS  PubMed  Google Scholar 

  27. Eskelinen EL, Prescott AR, Cooper J, Brachmann SM, Wang L, Tang X et al. Inhibition of autophagy in mitotic animal cells. Traffic 2002; 3: 878–893.

    Article  CAS  PubMed  Google Scholar 

  28. Minn AJ, Boise LH, Thompson CB . Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev 1996; 10: 2621–2631.

    Article  CAS  PubMed  Google Scholar 

  29. Lanni JS, Jacks T . Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 1998; 18: 1055–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aplin A, Jasionowski T, Tuttle DL, Lenk SE, Dunn Jr WA . Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J Cell Physiol 1992; 152: 458–466.

    Article  CAS  PubMed  Google Scholar 

  31. Webb JL, Ravikumar B, Rubinsztein DC . Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol 2004; 36: 2541–2550.

    Article  CAS  PubMed  Google Scholar 

  32. Blagosklonny MV, Fojo T . Molecular effects of paclitaxel: myths and reality (a critical review). Int J Cancer 1999; 83: 151–156.

    Article  CAS  PubMed  Google Scholar 

  33. Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L . Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res 1996; 56: 816–825.

    CAS  PubMed  Google Scholar 

  34. Derry WB, Wilson L, Jordan MA . Low potency of taxol at microtubule minus ends: implications for its antimitotic and therapeutic mechanism. Cancer Res 1998; 58: 1177–1184.

    CAS  PubMed  Google Scholar 

  35. Wang TH, Wang HS, Soong YK . Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 2000; 88: 2619–2628.

    Article  CAS  PubMed  Google Scholar 

  36. Kimura S, Noda T, Yoshimori T . Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 2008; 33: 109–122.

    Article  CAS  PubMed  Google Scholar 

  37. Gump JM, Thorburn A . Autophagy and apoptosis: what is the connection? Trends Cell Biol 2011; 21: 387–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Debnath J, Baehrecke EH, Kroemer G . Does autophagy contribute to cell death? Autophagy 2005; 1: 66–74.

    Article  CAS  PubMed  Google Scholar 

  39. Czernick M, Rieger A, Goping IS . Bim is reversibly phosphorylated but plays a limited role in paclitaxel cytotoxicity of breast cancer cell lines. Biochem Biophys Res Commun 2009; 379: 145–150.

    Article  CAS  PubMed  Google Scholar 

  40. Edgar R, Domrachev M, Lash AE . Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by operating grants from the Canadian Breast Cancer Foundation and Alberta Cancer Foundation/Alberta Innovates-Health Solutions (project #25011) awarded to ISG. We thank Dr Junying Yuan for the kind gift of the anti-phospho T159 Vps34 antibody. We thank the Goping lab, Simmen lab and Signal Transduction Research Group for valuable discussions. Owing to journal reference restraints, we apologize to those investigators whose work was not cited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I S Goping.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veldhoen, R., Banman, S., Hemmerling, D. et al. The chemotherapeutic agent paclitaxel inhibits autophagy through two distinct mechanisms that regulate apoptosis. Oncogene 32, 736–746 (2013). https://doi.org/10.1038/onc.2012.92

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.92

Keywords

This article is cited by

Search

Quick links