Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cystathionase mediates senescence evasion in melanocytes and melanoma cells

Abstract

The development of malignant melanoma is a highly complex process, which is still poorly understood. A majority of human melanomas are found to express a few oncogenic proteins, such as mutant RAS and BRAF variants. However, these oncogenes are also found in nevi, and it is now a well-accepted fact that their expression alone leads to senescence. This renders the understanding of senescence escape mechanisms an important point to understand tumor development. Here, we approached the question of senescence evasion by expressing the transcription factor v-myc myelocytomatosis viral oncogene homolog (c-MYC), which is known to act synergistically with many oncogenes, in melanocytes. We observed that MYC drives the evasion of reactive-oxygen stress-induced melanocyte senescence, caused by activated receptor tyrosine kinase signaling. Conversely, MIZ1, the growth suppressing interaction partner of MYC, is involved in mediating melanocyte senescence. Both, MYC overexpression and Miz1 knockdown led to a strong reduction of endogenous reactive-oxygen species (ROS), DNA damage and senescence. We identified the cystathionase (CTH) gene product as mediator of the ROS-related MYC and MIZ1 effects. Blocking CTH enzymatic activity in MYC-overexpressing and Miz1 knockdown cells increased intracellular stress and senescence. Importantly, pharmacological inhibition of CTH in human melanoma cells also reconstituted senescence in the majority of cell lines, and CTH knockdown reduced tumorigenic effects such as proliferation, H2O2 resistance and soft agar growth. Thus, we identified CTH as new MYC target gene with an important function in senescence evasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Onken MD, Worley LA, Long MD, Duan S, Council ML, Bowcock AM et al. Oncogenic mutations in GNAQ occur early in uveal melanoma. Invest Ophthalmol Vis Sci 2008; 49: 5230–5234.

    Article  Google Scholar 

  2. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2009; 457: 599–602.

    Article  CAS  Google Scholar 

  3. Whitwam T, Vanbrocklin MW, Russo ME, Haak PT, Bilgili D, Resau JH et al. Differential oncogenic potential of activated RAS isoforms in melanocytes. Oncogene 2007; 26: 4563–4570.

    Article  CAS  Google Scholar 

  4. Aziz N, Cherwinski H, McMahon M . Complementation of defective colony-stimulating factor 1 receptor signaling and mitogenesis by Raf and v-Src. Mol Cell Biol 1999; 19: 1101–1115.

    Article  CAS  Google Scholar 

  5. Parrella P, Caballero OL, Sidransky D, Merbs SL . Detection of c-myc amplification in uveal melanoma by fluorescent in situ hybridization. Invest Ophthalmol Vis Sci 2001; 42: 1679–1684.

    CAS  PubMed  Google Scholar 

  6. Schlagbauer-Wadl H, Griffioen M, van Elsas A, Schrier PI, Pustelnik T, Eichler HG et al. Influence of increased c-Myc expression on the growth characteristics of human melanoma. J Invest Dermatol 1999; 112: 332–336.

    Article  CAS  Google Scholar 

  7. Tulley PN, Neale M, Jackson D, Chana JS, Grover R, Cree I et al. The relation between c-myc expression and interferon sensitivity in uveal melanoma. Br J Ophthalmol 2004; 88: 1563–1567.

    Article  CAS  Google Scholar 

  8. Biroccio A, Benassi B, Amodei S, Gabellini C, Del Bufalo D, Zupi G . c-Myc down-regulation increases susceptibility to cisplatin through reactive oxygen species-mediated apoptosis in M14 human melanoma cells. Mol Pharmacol 2001; 60: 174–182.

    Article  CAS  Google Scholar 

  9. Bucci B, D’Agnano I, Amendola D, Citti A, Raza GH, Miceli R et al. Myc down-regulation sensitizes melanoma cells to radiotherapy by inhibiting MLH1 and MSH2 mismatch repair proteins. Clin Cancer Res 2005; 11: 2756–2767.

    Article  CAS  Google Scholar 

  10. Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA et al. C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 2008; 27: 6623–6634.

    Article  CAS  Google Scholar 

  11. Mallette FA, Gaumont-Leclerc MF, Huot G, Ferbeyre G . Myc down-regulation as a mechanism to activate the Rb pathway in STAT5A-induced senescence. J Biol Chem 2007; 282: 34938–34944.

    Article  CAS  Google Scholar 

  12. Herold S, Hock A, Herkert B, Berns K, Mullenders J, Beijersbergen R et al. Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1. EMBO J 2008; 27: 2851–2861.

    Article  CAS  Google Scholar 

  13. Herold S, Wanzel M, Beuger V, Frohme C, Beul D, Hillukkala T et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 2002; 10: 509–521.

    Article  CAS  Google Scholar 

  14. Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 2001; 3: 392–399.

    Article  CAS  Google Scholar 

  15. Wanzel M, Herold S, Eilers M . Transcriptional repression by Myc. Trends Cell Biol 2003; 13: 146–150.

    Article  CAS  Google Scholar 

  16. Leikam C, Hufnagel A, Schartl M, Meierjohann S . Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. Oncogene 2008; 27: 7070–7082.

    Article  CAS  Google Scholar 

  17. Meierjohann S, Schartl M . From Mendelian to molecular genetics: the Xiphophorus melanoma model. Trends Genet 2006; 22: 654–661.

    Article  CAS  Google Scholar 

  18. Jamerson MH, Johnson MD, Dickson RB . Dual regulation of proliferation and apoptosis: c-myc in bitransgenic murine mammary tumor models. Oncogene 2000; 19: 1065–1071.

    Article  CAS  Google Scholar 

  19. Kost DP, Michalopoulos GK . Effect of epidermal growth factor on the expression of protooncogenes c-myc and c-Ha-ras in short-term primary hepatocyte culture. J Cell Physiol 1990; 144: 122–127.

    Article  CAS  Google Scholar 

  20. Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D et al. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol 2010; 12: 51–14.

    Article  Google Scholar 

  21. Popov N, Schulein C, Jaenicke LA, Eilers M . Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nat Cell Biol 2010; 12: 973–981.

    Article  CAS  Google Scholar 

  22. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23: 2116–2125.

    Article  CAS  Google Scholar 

  23. Wanzel M, Kleine-Kohlbrecher D, Herold S, Hock A, Berns K, Park J et al. Akt and 14-3-3eta regulate Miz1 to control cell-cycle arrest after DNA damage. Nat Cell Biol 2005; 7: 30–41.

    Article  CAS  Google Scholar 

  24. Rao AM, Drake MR, Stipanuk MH . Role of the transsulfuration pathway and of gamma-cystathionase activity in the formation of cysteine and sulfate from methionine in rat hepatocytes. J Nutr 1990; 120: 837–845.

    Article  CAS  Google Scholar 

  25. Jhee KH, Kruger WD . The role of cystathionine beta-synthase in homocysteine metabolism. Antioxid Redox Signal 2005; 7: 813–822.

    Article  CAS  Google Scholar 

  26. Yamamoto N, Tanaka T, Noguchi T . Effect of cysteine on expression of cystathionine beta-synthase in the rat liver. J Nutr Sci Vitaminol 1995; 41: 197–205.

    Article  CAS  Google Scholar 

  27. Conrad M, Sato H . The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): cystine supplier and beyond. Amino Acids 2012; 42: 231–246.

    Article  CAS  Google Scholar 

  28. Sun Q, Collins R, Huang S, Holmberg-Schiavone L, Anand GS, Tan CH et al. Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H(2)S. J Biol Chem 2009; 284: 3076–3085.

    Article  CAS  Google Scholar 

  29. Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol 2006; 8: 1053–1063.

    Article  CAS  Google Scholar 

  30. Dickhout JG, Carlisle RE, Jerome DE, Mohammed-Ali Z, Jiang H, Yang G et al. Integrated stress response modulates cellular redox state via induction of cystathionine gamma-lyase: cross-talk between integrated stress response and thiol metabolism. J Biol Chem 2012; 287: 7603–7614.

    Article  CAS  Google Scholar 

  31. Fried L, Arbiser JL . The reactive oxygen-driven tumor: relevance to melanoma. Pigment Cell Melanoma Res 2008; 21: 117–122.

    Article  CAS  Google Scholar 

  32. Chintala S, Li W, Lamoreux ML, Ito S, Wakamatsu K, Sviderskaya EV et al. Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. Proc Natl Acad Sci USA 2005; 102: 10964–10969.

    Article  CAS  Google Scholar 

  33. Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 2008; 14: 458–470.

    Article  CAS  Google Scholar 

  34. Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A . Deconstructing PML-induced premature senescence. EMBO J 2002; 21: 3358–3369.

    Article  CAS  Google Scholar 

  35. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 1999; 274: 7936–7940.

    Article  CAS  Google Scholar 

  36. Rai P, Young JJ, Burton DG, Giribaldi MG, Onder TT, Weinberg RA . Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene 2011; 30: 1489–1496.

    Article  CAS  Google Scholar 

  37. Park J, Jung Y, Kim J, Kim KY, Ahn SG, Song K et al. TC1 (C8orf4) is upregulated by cellular stress and mediates heat shock response. Biochem Biophys Res Commun 2007; 360: 447–452.

    Article  CAS  Google Scholar 

  38. Li SK, Smith DK, Leung WY, Cheung AM, Lam EW, Dimri GP et al. FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. J Biol Chem 2008; 283: 16545–16553.

    Article  CAS  Google Scholar 

  39. Blanco-Bose WE, Murphy MJ, Ehninger A, Offner S, Dubey C, Huang W et al. C-Myc and its target FoxM1 are critical downstream effectors of constitutive androstane receptor (CAR) mediated direct liver hyperplasia. Hepatology 2008; 48: 1302–1311.

    Article  CAS  Google Scholar 

  40. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475: 106–109.

    Article  CAS  Google Scholar 

  41. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  Google Scholar 

  42. Sankar N, Kadeppagari RK, Thimmapaya B . c-Myc-induced aberrant DNA synthesis and activation of DNA damage response in p300 knockdown cells. J Biol Chem 2009; 284: 15193–15205.

    Article  CAS  Google Scholar 

  43. Robinson K, Asawachaicharn N, Galloway DA, Grandori C . c-Myc accelerates S-Phase and requires WRN to avoid replication stress. PLoS One 2009; 4: e5951.

    Article  Google Scholar 

  44. Grandori C, Wu KJ, Fernandez P, Ngouenet C, Grim J, Clurman BE et al. Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev 2003; 17: 1569–1574.

    Article  CAS  Google Scholar 

  45. Hydbring P, Bahram F, Su Y, Tronnersjo S, Hogstrand K, von der Lehr N et al. Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proc Natl Acad Sci USA 2010; 107: 58–63.

    Article  CAS  Google Scholar 

  46. Biroccio A, Amodei S, Antonelli A, Benassi B, Zupi G . Inhibition of c-Myc oncoprotein limits the growth of human melanoma cells by inducing cellular crisis. J Biol Chem 2003; 278: 35693–35701.

    Article  CAS  Google Scholar 

  47. Benassi B, Fanciulli M, Fiorentino F, Porrello A, Chiorino G, Loda M et al. c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell 2006; 21: 509–519.

    Article  CAS  Google Scholar 

  48. Benassi B, Zupi G, Biroccio A . Gamma-glutamylcysteine synthetase mediates the c-Myc-dependent response to antineoplastic agents in melanoma cells. Mol Pharmacol 2007; 72: 1015–1023.

    Article  CAS  Google Scholar 

  49. van Riggelen J, Muller J, Otto T, Beuger V, Yetil A, Choi PS et al. The interaction between Myc and Miz1 is required to antagonize TGFbeta-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev 2010; 24: 1281–1294.

    Article  CAS  Google Scholar 

  50. Vene R, Castellani P, Delfino L, Lucibello M, Ciriolo MR, Rubartelli A . The cystine/cysteine cycle and gsh are independent and crucial antioxidant systems in malignant melanoma cells and represent druggable targets. Antioxid Redox Signal 2011; 15: 2439–2453.

    Article  CAS  Google Scholar 

  51. Rosado JO, Salvador M, Bonatto D . Importance of the trans-sulfuration pathway in cancer prevention and promotion. Mol Cell Biochem 2007; 301: 1–12.

    Article  CAS  Google Scholar 

  52. Yang G, Cao K, Wu L, Wang R . Cystathionine gamma-lyase overexpression inhibits cell proliferation via a H2S-dependent modulation of ERK1/2 phosphorylation and p21Cip/WAK-1. J Biol Chem 2004; 279: 49199–49205.

    Article  CAS  Google Scholar 

  53. Kandil S, Brennan L, McBean GJ . Glutathione depletion causes a JNK and p38MAPK-mediated increase in expression of cystathionine-gamma-lyase and upregulation of the transsulfuration pathway in C6 glioma cells. Neurochem Int 2010; 56: 611–619.

    Article  CAS  Google Scholar 

  54. Cao Q, Zhang L, Yang G, Xu C, Wang R . Butyrate-stimulated H2S production in colon cancer cells. Antioxid Redox Signal 2010; 12: 1101–1109.

    Article  CAS  Google Scholar 

  55. Rzymski T, Milani M, Singleton DC, Harris AL . Role of ATF4 in regulation of autophagy and resistance to drugs and hypoxia. Cell Cycle 2009; 8: 3838–3847.

    Article  CAS  Google Scholar 

  56. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 2008; 322: 587–590.

    Article  CAS  Google Scholar 

  57. Huang S, Chua JH, Yew WS, Sivaraman J, Moore PK, Tan CH et al. Site-directed mutagenesis on human cystathionine-gamma-lyase reveals insights into the modulation of H2S production. J Mol Biol 2010; 396: 708–718.

    Article  CAS  Google Scholar 

  58. Szabo C . Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 2007; 6: 917–935.

    Article  CAS  Google Scholar 

  59. Meierjohann S, Wende E, Kraiss A, Wellbrock C, Schartl M . The oncogenic epidermal growth factor receptor variant Xiphophorus melanoma receptor kinase induces motility in melanocytes by modulation of focal adhesions. Cancer Res 2006; 66: 3145–3152.

    Article  CAS  Google Scholar 

  60. Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 2006; 95: 496–505.

    Article  CAS  Google Scholar 

  61. Popov N, Herold S, Llamazares M, Schulein C, Eilers M . Fbw7 and Usp28 regulate myc protein stability in response to DNA damage. Cell Cycle 2007; 6: 2327–2331.

    Article  CAS  Google Scholar 

  62. Pfaffl MW, Horgan GW, Dempfle L . Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002; 30: e36.

    Article  Google Scholar 

  63. Tietze F . Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 1969; 27: 502–522.

    Article  CAS  Google Scholar 

  64. Kress TR, Cannell IG, Brenkman AB, Samans B, Gaestel M, Roepman P et al. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. Mol Cell 2011; 41: 445–457.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dorothy Bennett, St George's, University of London (Wellcome Trust Functional Genomics Cell Bank) for providing the cell lines Hermes 3a and melan-a sut. This work was supported by the Deutsche Forschungsgesellschaft, Transregio 17 (‘RAS-dependent pathways in human cancer’). CL was supported by a grant of the German Excellence Initiative to the Graduate School of Life Sciences, University of Wurzburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Meierjohann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leikam, C., Hufnagel, A., Walz, S. et al. Cystathionase mediates senescence evasion in melanocytes and melanoma cells. Oncogene 33, 771–782 (2014). https://doi.org/10.1038/onc.2012.641

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.641

Keywords

This article is cited by

Search

Quick links