Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ribosomal protein S14 unties the MDM2–p53 loop upon ribosomal stress

Abstract

The MDM2–p53 feedback loop is crucially important for restricting p53 level and activity during normal cell growth and proliferation, and is thus subjected to dynamic regulation in order for cells to activate p53 upon various stress signals. Several ribosomal proteins, such as RPL11, RPL5, RPL23, RPL26 or RPS7, have been shown to have a role in regulation of this feedback loop in response to ribosomal stress. Here, we identify another ribosomal protein S14, which is highly associated with 5q-syndrome, as a novel activator of p53 by inhibiting MDM2 activity. We found that RPS14, but not RPS19, binds to the central acidic domain of MDM2, similar to RPL5 and RPL23, and inhibits its E3 ubiquitin ligase activity toward p53. This RPS14–MDM2 binding was induced upon ribosomal stress caused by actinomycin D or mycophenolic acid. Overexpression of RPS14, but not RPS19, elevated p53 level and activity, leading to G1 or G2 arrest. Conversely, knockdown of RPS14 alleviated p53 induction by these two reagents. Interestingly, knockdown of either RPS14 or RPS19 caused a ribosomal stress that led to p53 activation, which was impaired by further knocking down the level of RPL11 or RPL5. Together, our results demonstrate that RPS14 and RPS19 have distinct roles in regulating the MDM2–p53 feedback loop in response to ribosomal stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sharpless NE, DePinho RA . p53: good cop/bad cop. Cell 2002; 110: 9–12.

    Article  CAS  Google Scholar 

  2. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  Google Scholar 

  3. Wu X, Bayle JH, Olson D, Levine AJ . The p53-mdm-2 autoregulatory feedback loop. Genes & Dev 1993; 7: 1126–1132.

    Article  CAS  Google Scholar 

  4. Juven T, Barak Y, Zauberman A, George DL, Oren M . Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 1993; 8: 3411–3416.

    CAS  PubMed  Google Scholar 

  5. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B . Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993; 362: 857–860.

    Article  CAS  Google Scholar 

  6. Poyurovsky MV, Katz C, Laptenko O, Beckerman R, Lokshin M, Ahn J et al. The C terminus of p53 binds the N-terminal domain of MDM2. Nat Struct Mol Biol 2010; 17: 982–989.

    Article  CAS  Google Scholar 

  7. Haupt Y, Maya R, Kazaz A, Oren M . Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    Article  CAS  Google Scholar 

  8. Kubbutat MH, Jones SN, Vousden KH . Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303.

    Article  CAS  Google Scholar 

  9. Fuchs SY, Adler V, Buschmann T, Wu X, Ronai Z . Mdm2 association with p53 targets its ubiquitination. Oncogene 1998; 17: 2543–2547.

    Article  CAS  Google Scholar 

  10. Montes de Oca Luna R, Wagner DS, Lozano G . Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378: 203–206.

    Article  CAS  Google Scholar 

  11. Jones SN, Roe AE, Donehower LA, Bradley A . Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378: 206–208.

    Article  CAS  Google Scholar 

  12. Kruse JP, Gu W . Modes of p53 regulation. Cell 2009; 137: 609–622.

    Article  CAS  Google Scholar 

  13. Zhang Y, Lu H . Signaling to p53: ribosomal proteins find their way. Cancer cell 2009; 16: 369–377.

    Article  CAS  Google Scholar 

  14. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI . The nucleolus under stress. Mol Cell 2010; 40: 216–227.

    Article  CAS  Google Scholar 

  15. Ashcroft M, Taya Y, Vousden KH . Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol 2000; 20: 3224–3233.

    Article  CAS  Google Scholar 

  16. Gilkes DM, Chen L, Chen J . MDMX regulation of p53 response to ribosomal stress. The EMBO Journal 2006; 25: 5614–5625.

    Article  CAS  Google Scholar 

  17. Sun XX, Dai MS, Lu H . 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J Biol Chem 2007; 282: 8052–8059.

    Article  CAS  Google Scholar 

  18. Sun XX, Dai MS, Lu H . Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11. J Biol Chem 2008; 283: 12387–12392.

    Article  CAS  Google Scholar 

  19. Bhat KP, Itahana K, Jin A, Zhang Y . Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. The EMBO Journal 2004; 23: 2402–2412.

    Article  CAS  Google Scholar 

  20. Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J et al. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 2009; 11: 501–508.

    Article  CAS  Google Scholar 

  21. Sun XX, Wang YG, Xirodimas DP, Dai MS . Perturbation of 60 S ribosomal biogenesis results in ribosomal protein L5- and L11-dependent p53 activation. J Biol Chem 2010; 285: 25812–25821.

    Article  CAS  Google Scholar 

  22. Holzel M, Orban M, Hochstatter J, Rohrmoser M, Harasim T, Malamoussi A et al. Defects in 18 S or 28 S rRNA processing activate the p53 pathway. J Biol Chem 2010; 285: 6364–6370.

    Article  Google Scholar 

  23. Pestov DG, Strezoska Z, Lau LF . Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 2001; 21: 4246–4255.

    Article  CAS  Google Scholar 

  24. Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 2003; 12: 1151–1164.

    Article  CAS  Google Scholar 

  25. Dai MS, Sun XX, Lu H . Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2. Mol Cell Biol 2008; 28: 4365–4376.

    Article  CAS  Google Scholar 

  26. Yu W, Qiu Z, Gao N, Wang L, Cui H, Qian Y et al. PAK1IP1, a ribosomal stress-induced nucleolar protein, regulates cell proliferation via the p53-MDM2 loop. Nucleic Acids Res 2011; 39: 2234–2248.

    Article  CAS  Google Scholar 

  27. Llanos S, Serrano M . Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway. Cell Cycle 2010; 9: 4005–4012.

    Article  CAS  Google Scholar 

  28. Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH . Regulation of HDM2 activity by the ribosomal protein L11. Cancer cell 2003; 3: 577–587.

    Article  CAS  Google Scholar 

  29. Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K et al. Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 2011; 17: 944–951.

    Article  CAS  Google Scholar 

  30. Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 2003; 23: 8902–8912.

    Article  CAS  Google Scholar 

  31. Dai MS, Lu H . Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 2004; 279: 44475–44482.

    Article  CAS  Google Scholar 

  32. Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H . Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 2004; 24: 7654–7668.

    Article  CAS  Google Scholar 

  33. Jin A, Itahana K, O’Keefe K, Zhang Y . Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 2004; 24: 7669–7680.

    Article  CAS  Google Scholar 

  34. Zhang Y, Wang J, Yuan Y, Zhang W, Guan W, Wu Z et al. Negative regulation of HDM2 to attenuate p53 degradation by ribosomal protein L26. Nucleic Acids Res 2010; 38: 6544–6554.

    Article  CAS  Google Scholar 

  35. Chen D, Zhang Z, Li M, Wang W, Li Y, Rayburn ER et al. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 2007; 26: 5029–5037.

    Article  CAS  Google Scholar 

  36. Zhu Y, Poyurovsky MV, Li Y, Biderman L, Stahl J, Jacq X et al. Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell 2009; 35: 316–326.

    Article  CAS  Google Scholar 

  37. Xiong X, Zhao Y, He H, Sun Y . Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Oncogene 2011; 30: 1798–1811.

    Article  CAS  Google Scholar 

  38. Sun XX, DeVine T, Challagundla KB, Dai MS . Interplay between ribosomal protein S27a and MDM2 protein in p53 activation in response to ribosomal stress. J Biol Chem 2011; 286: 22730–22741.

    Article  CAS  Google Scholar 

  39. Lindstrom MS, Jin A, Deisenroth C, White Wolf G, Zhang Y . Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol Cell Biol 2007; 27: 1056–1068.

    Article  CAS  Google Scholar 

  40. Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindstrom MS et al. An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction Cancer Cell 2010; 18: 231–243.

    Article  CAS  Google Scholar 

  41. Narla A, Ebert BL . Ribosomopathies: human disorders of ribosome dysfunction. Blood 2010; 115: 3196–3205.

    Article  CAS  Google Scholar 

  42. Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet 1999; 21: 169–175.

    Article  CAS  Google Scholar 

  43. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008; 451: 335–339.

    Article  CAS  Google Scholar 

  44. Barlow JL, Drynan LF, Hewett DR, Holmes LR, Lorenzo-Abalde S, Lane AL et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med 2010; 16: 59–66.

    Article  CAS  Google Scholar 

  45. Gazda HT, Sheen MR, Vlachos A, Choesmel V, O’Donohue MF, Schneider H et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 2008; 83: 769–780.

    Article  CAS  Google Scholar 

  46. Cmejla R, Cmejlova J, Handrkova H, Petrak J, Petrtylova K, Mihal V et al. Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond-Blackfan anemia. Hum Mutat 2009; 30: 321–327.

    Article  CAS  Google Scholar 

  47. Yadavilli S, Mayo LD, Higgins M, Lain S, Hegde V, Deutsch WA . Ribosomal protein S3: A multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair 2009; 8: 1215–1224.

    Article  CAS  Google Scholar 

  48. Dai MS, Shi D, Jin Y, Sun XX, Zhang Y, Grossman SR et al. Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem 2006; 281: 24304–24313.

    Article  CAS  Google Scholar 

  49. Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 2011; 117: 2567–2576.

    Article  CAS  Google Scholar 

  50. Poyurovsky MV, Priest C, Kentsis A, Borden KL, Pan ZQ, Pavletich N et al. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. The EMBO Journal 2007; 26: 90–101.

    Article  CAS  Google Scholar 

  51. Uldrijan S, Pannekoek WJ, Vousden KH . An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. The EMBO Journal 2007; 26: 102–112.

    Article  CAS  Google Scholar 

  52. Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M . Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell 2008; 32: 180–189.

    Article  CAS  Google Scholar 

  53. Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S et al. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell 2010; 18: 147–159.

    Article  CAS  Google Scholar 

  54. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W . Acetylation is indispensable for p53 activation. Cell 2008; 133: 612–626.

    Article  CAS  Google Scholar 

  55. Sundqvist A, Liu G, Mirsaliotis A, Xirodimas DP . Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Reports 2009; 10: 1132–1139.

    Article  CAS  Google Scholar 

  56. Jin Y, Zeng SX, Sun XX, Lee H, Blattner C, Xiao Z et al. MDMX promotes proteasomal turnover of p21 at G1 and early S phases independently of, but in cooperation with, MDM2. Mol Cell Biol 2008; 28: 1218–1229.

    Article  CAS  Google Scholar 

  57. Dai MS, Arnold H, Sun XX, Sears R, Lu H . Inhibition of c-Myc activity by ribosomal protein L11. The EMBO Journal 2007; 26: 3332–3345.

    Article  CAS  Google Scholar 

  58. Jin Y, Zeng SX, Dai MS, Yang XJ, Lu H . MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation. J Biol Chem 2002; 277: 30838–30843.

    Article  CAS  Google Scholar 

  59. Zeng X, Li X, Miller A, Yuan Z, Yuan W, Kwok RP et al. The N-terminal domain of p73 interacts with the CH1 domain of p300/CREB binding protein and mediates transcriptional activation and apoptosis. Mol Cell Biol 2000; 20: 1299–1310.

    Article  CAS  Google Scholar 

  60. Zeng SX, Dai MS, Keller DM, Lu H . SSRP1 functions as a co-activator of the transcriptional activator p63. The EMBO Journal 2002; 21: 5487–5497.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Steven Ellis for reagents and discussion. This work was supported in part by NIH-NCI Grants CA095441, CA 079721 and CA129828 to HL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Lu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Hao, Q., Liao, J. et al. Ribosomal protein S14 unties the MDM2–p53 loop upon ribosomal stress. Oncogene 32, 388–396 (2013). https://doi.org/10.1038/onc.2012.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.63

Keywords

This article is cited by

Search

Quick links