Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

DNA damage associated with mitosis and cytokinesis failure

Abstract

Mitosis is a highly dynamic process, aimed at separating identical copies of genomic material into two daughter cells. A failure of the mitotic process generates cells that carry abnormal chromosome numbers. Such cells are predisposed to become tumorigenic upon continuous cell division and thus need to be removed from the population to avoid cancer formation. Cells that fail in mitotic progression indeed activate cell death or cell cycle arrest pathways; however, these mechanisms are not well understood. Growing evidence suggests that the formation of de novo DNA damage during and after mitotic failure is one of the causal factors that initiate those pathways. Here, we analyze several distinct malfunctions during mitosis and cytokinesis that lead to de novo DNA damage generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pines J, Rieder CL . Re-staging mitosis: a contemporary view of mitotic progression. Nat Cell Biol 2001; 3: E3–E6.

    CAS  PubMed  Google Scholar 

  2. Cheeseman I, Desai A . Molecular architecture of the kinetochore–microtubule interface. Nat Rev Mol Cell Biol 2008; 9: 33–46.

    CAS  PubMed  Google Scholar 

  3. Musacchio A, Salmon ED . The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2007; 8: 379–393.

    CAS  PubMed  Google Scholar 

  4. Ganem N, Storchova Z, D Pellman . Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 2007; 17: 157–162.

    CAS  PubMed  Google Scholar 

  5. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D . Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 2005; 437: 1043–1047.

    CAS  PubMed  Google Scholar 

  6. Pfau SJ, Amon A . Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep 2012; 13: 515–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Holland AJ, Cleveland DW . Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 2012; 08: 501–514.

    Google Scholar 

  8. Davoli T, de Lange T . The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 2011; 27: 585–610.

    CAS  PubMed  Google Scholar 

  9. Vitale I, Galluzzi L, Castedo M, Kroemer G . Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 2011; 12: 385–392.

    CAS  PubMed  Google Scholar 

  10. Brito DA, Rieder CL . Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 2006; 16: 1194–1200.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Castedo M, Perfettini J-L, Roumier T, Andreau K, Medema R, Kroemer G . Cell death by mitotic catastrophe: a molecular definition. Oncogene 2004; 23: 2825–2837.

    CAS  PubMed  Google Scholar 

  12. Rieder C, Maiato H . Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 2004; 7: 637–651.

    CAS  PubMed  Google Scholar 

  13. Vakifahmetoglu H, Olsson M, Zhivotovsky B . Death through a tragedy: mitotic catastrophe. Cell Death Differ 2008; 15: 1153–1162.

    CAS  PubMed  Google Scholar 

  14. Baker DJ, Chen J, van Deursen JM . The mitotic checkpoint in cancer and aging: what have mice taught us? Curr Opin Cell Biol 2005; 17: 583–589.

    CAS  PubMed  Google Scholar 

  15. Compton DA . Mechanisms of aneuploidy. Curr Opin Cell Biol 2011; 23: 109–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Vitale I, Galluzzi L, Castedo M, Kroemer G . Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 2011; 12: 385–392.

    CAS  PubMed  Google Scholar 

  17. Thompson SL, Compton DA . Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 2010; 188: 369–381.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gascoigne K, Taylor S . Cancer cells display profound intra-and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 2008; 14: 111–122.

    CAS  PubMed  Google Scholar 

  19. Brito DA, Rieder CL . The ability to survive mitosis in the presence of microtubule poisons differs significantly between human nontransformed (RPE-1) and cancer (U2OS, HeLa) cells. Cell Motil Cytoskeleton 2009; 66: 437–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi J, Orth JD, Mitchison T . Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res 2008; 68: 3269–3276.

    CAS  PubMed  Google Scholar 

  21. Uetake Y, Sluder G . Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a “tetraploidy checkpoint”. J Cell Biol 2004; 165: 609–615.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong C, Stearns T . Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol 2005; 6: 1–12.

    Google Scholar 

  23. Silkworth WT, Nardi IK, Scholl LM, Cimini D . Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE 2009; 4: e6564.

    PubMed  PubMed Central  Google Scholar 

  24. Ganem NJ, Godinho SA, Pellman D . A mechanism linking extra centrosomes to chromosomal instability. Nature 2009; 460: 278–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Andreassen PR, Lohez OD, Lacroix FB, Margolis RL . Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 2001; 12: 1315–1328.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayashi MT, Cesare AJ, Fitzpatrick JAJ, Lazzerini-Denchi E, Karlseder J . A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat Struct Mol Biol 2012; 19: 387–394.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Quignon F, Rozier L, Lachages A-M, Bieth A, Simili M, Debatisse M . Sustained mitotic block elicits DNA breaks: one-step alteration of ploidy and chromosome integrity in mammalian cells. Oncogene 2007; 26: 165–172.

    CAS  PubMed  Google Scholar 

  28. Dalton WB, Yu B, Yang VW . p53 suppresses structural chromosome instability after mitotic arrest in human cells. Oncogene 2010; 29: 1929–1940.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dalton WB, Yang VW . Role of prolonged mitotic checkpoint activation in the formation and treatment of cancer. Future Oncol 2009; 5: 1363–1370.

    CAS  PubMed  Google Scholar 

  30. Falck J, Coates J, Jackson SP . Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 2005; 434: 605–611.

    CAS  PubMed  Google Scholar 

  31. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP . MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 2005; 123: 1213–1226.

    Article  CAS  PubMed  Google Scholar 

  32. Cimprich KA, Cortez D . ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 2008; 9: 616–627.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Polo S, Jackson S . Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 2011; 25: 409–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bartek J, Lukas J . Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003; 3: 421–429.

    CAS  PubMed  Google Scholar 

  35. Giunta S, Jackson SP . Give me a break, but not in mitosis: the mitotic DNA damage response marks DNA double-strand breaks with early signaling events. Cell Cycle 2011; 10: 1215–1221.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rieder CL, Cole RW . Entry into mitosis in vertebrate somatic cells is guarded by a chromosome damage checkpoint that reverses the cell cycle when triggered during early but not late prophase. J Cell Biol 1998; 142: 1013–1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rieder CL . Mitosis in vertebrates: the G2/M and M/A transitions and their associated checkpoints. Chromosome Res 2011; 19: 291–306.

    PubMed  Google Scholar 

  38. Giunta S, Belotserkovskaya R, Jackson SP . DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol 2010; 190: 197–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang W, Peng G, Lin SY, Zhang P . DNA damage response is suppressed by the high cyclin-dependent kinase 1 activity in mitotic mammalian cells. J Biol Chem 2011; 286: 35899–35905.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Giunta S, Belotserkovskaya R, Jackson SP . DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol 2010; 190: 197–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Vugt MATM, Gardino AK, R Linding, Ostheimer GJ, Reinhardt HC, Ong S-E et al. A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G2/M DNA damage checkpoint. PLoS Biol 2010; 8: e1000287.

    PubMed  PubMed Central  Google Scholar 

  42. Sanchez Y, Bachant J, Wang H, Hu F, Liu D, Tetzlaff M et al. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 1999; 286: 1166–1171.

    CAS  PubMed  Google Scholar 

  43. Zhang T, Nirantar S, Lim HH, Sinha I, Surana U . DNA damage checkpoint maintains Cdh1 in an active state to inhibit anaphase progression. Dev Cell 2009; 17: 541–551.

    CAS  PubMed  Google Scholar 

  44. Skoufias D, Lacroix F, Andreassen P, Wilson L, Margolis R . Inhibition of DNA decatenation, but not DNA damage, arrests cells at metaphase. Mol Cell 2004; 15: 977–990.

    CAS  PubMed  Google Scholar 

  45. Mikhailov A, Cole R, Rieder C . DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint. Curr Biol 2002; 12: 1797–1806.

    CAS  PubMed  Google Scholar 

  46. Rieder CL, Cole RW, Khodjakov A, Sluder G . The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 1995; 130: 941–948.

    CAS  PubMed  Google Scholar 

  47. Liu D, Vader G, Vromans MJM, Lampson MA, Lens SMA . Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 2009; 323: 1350–1353.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nezi L, Musacchio A . Sister chromatid tension and the spindle assembly checkpoint. Curr Opin Cell Biol 2009; 21: 785–795.

    CAS  PubMed  Google Scholar 

  49. Hauf S, Cole R, LaTerra S, Zimmer C, Schnapp G, Walter R et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 2003; 161: 281.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rankin S, Ayad NG, Kirschner MW . Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol Cell 2005; 18: 185–200.

    CAS  PubMed  Google Scholar 

  51. McGuinness BE, Hirota T, Kudo NR, Peters J-M, Nasmyth K . Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol 2005; 3: e86.

    PubMed  PubMed Central  Google Scholar 

  52. Kapoor TM, Mayer TU, Coughlin ML, Mitchison TJ . Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 2000; 150: 975–988.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cowley DO, Rivera-Perez JA, Schliekelman M, He YJ, Oliver TG, Lu L et al. Aurora-A kinase is essential for bipolar spindle formation and early development. Mol Cell Biol 2009; 29: 1059–1071.

    CAS  PubMed  Google Scholar 

  54. Meraldi P, Draviam VM, Sorger PK . Timing and checkpoints in the regulation of mitotic progression. Dev Cell 2004; 7: 45–60.

    CAS  PubMed  Google Scholar 

  55. Sumara I, Gimenez-Abian JF, Gerlich D, Hirota T, Kraft C, de la Torre C et al. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr Biol 2004; 14: 1712–1722.

    CAS  PubMed  Google Scholar 

  56. Zeng X, Sigoillot F, Gaur S, Choi S, Pfaff KL, Oh D-C et al. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell 2010; 18: 382–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Westhorpe FG, Tighe A, Lara-Gonzalez P, Taylor SS . p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J Cell Sci 2011; 124: 3905–3916.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 2007; 11: 9–23.

    CAS  PubMed  Google Scholar 

  59. Toyoda Y, Yanagida M . Coordinated requirements of human topo II and cohesin for metaphase centromere alignment under Mad2-dependent spindle checkpoint surveillance. Mol Biol Cell 2006; 17: 2287–2302.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yanagida M . Clearing the way for mitosis: is cohesin a target? Nat Rev Mol Cell Biol 2009; 10: 489–496.

    CAS  PubMed  Google Scholar 

  61. Orth JD, Loewer A, Lahav G, Mitchison TJ . Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol Biol Cell 2012; 23: 567–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dalton WB, Nandan MO, Moore RT, Yang VW . Human cancer cells commonly acquire DNA damage during mitotic arrest. Cancer Res 2007; 67: 11487–11492.

    CAS  PubMed  Google Scholar 

  63. Shen K, Wang Y, Brooks S, Raz A, Wang YA . ATM is activated by mitotic stress and suppresses centrosome amplification in primary but not in tumor cells. J Cell Biochem 2006; 99: 1267–1274.

    CAS  PubMed  Google Scholar 

  64. de Lange T . How shelterin solves the telomere end-protection problem. Cold Spring Harb Symp Quant Biol 2010; 75: 167–177.

    CAS  PubMed  Google Scholar 

  65. Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 2012; 14: 355–365.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. van Steensel B, Smogorzewska A, de Lange T . TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92: 401–413.

    CAS  PubMed  Google Scholar 

  67. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 2012; 482: 53–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cesare AJ, Kaul Z, Cohen SB, Napier CE, Pickett HA, Neumann AA et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat Struct Mol Biol 2009; 16: 1244–1251.

    CAS  PubMed  Google Scholar 

  69. Davoli T, de Lange T . Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 2012; 21: 765–776.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang E, Ballister ER, Lampson MA . Aurora B dynamics at centromeres create a diffusion-based phosphorylation gradient. J Cell Biol 2011; 15: 539–549.

    Google Scholar 

  71. Yang C, Tang X, Guo X, Niikura Y, Kitagawa K, Cui K et al. Aurora-B mediated ATM serine 1403 phosphorylation is required for mitotic ATM activation and the spindle checkpoint. Mol Cell 2011; 44: 597–608.

    PubMed  PubMed Central  Google Scholar 

  72. Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED . Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 2001; 153: 517–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Thompson SL, Compton DA . Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors. Proc Natl Acad Sci USA 2011; 108 (44): 17974–17978.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang Z, Loncarek J, Khodjakov A, Rieder CL . Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nat Cell Biol 2008; 10: 748–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK . Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 2000; 101: 635–645.

    CAS  PubMed  Google Scholar 

  76. Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 2001; 409: 355–359.

    CAS  PubMed  Google Scholar 

  77. Kalitsis P, Earle E, Fowler KJ, Choo KH . Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev 2000; 14: 2277–2282.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Putkey FR, Cramer T, Morphew MK, Silk AD, Johnson RS, McIntosh JR et al. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell 2002; 3: 351–365.

    CAS  PubMed  Google Scholar 

  79. Janssen A, Van Der Burg M, Szuhai K, GJPL Kops, Medema RH . Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 2011; 333: 1895–1898.

    CAS  PubMed  Google Scholar 

  80. Steigemann P, Wurzenberger C, Schmitz MHA, Held M, Guizetti J, Maar S et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 2009; 136: 473–484.

    PubMed  Google Scholar 

  81. Norden C, Mendoza M, Dobbelaere J, Kotwaliwale CV, Biggins S, Barral Y . The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 2006; 125: 85–98.

    CAS  PubMed  Google Scholar 

  82. Pampalona J, Frías C, Genescà A, Tusell L . Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells. Plos Genet 2012; 8: e1002679.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fuller BG, Lampson MA, Foley EA, Rosasco-Nitcher S, Le KV, Tobelmann P et al. Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 2008; 453: 1132–1136.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dalton WB, Nandan MO, Moore RT, Yang VW . Human cancer cells commonly acquire DNA damage during mitotic arrest. Cancer Res 2007; 67: 11487–11492.

    CAS  PubMed  Google Scholar 

  85. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM . Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 2000; 275: 9390–9395.

    CAS  PubMed  Google Scholar 

  86. Sheltzer JM, Torres EM, Dunham MJ, Amon A . Transcriptional consequences of aneuploidy. Proc Natl Acad Sci USA 2012; 109: 12644–12649.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Slonim DK, Koide K, Johnson KL, Tantravahi U, Cowan JM, Jarrah Z et al. Functional genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant in Down syndrome fetuses. Proc Natl Acad Sci USA 2009; 106: 9425–9429.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Li M, Fang X, Baker DJ, Guo L, Gao X, Wei Z et al. The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc Natl Acad Sci USA 2010; 107 (32): 14188–14193.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hoffelder DR, Luo L, Burke NA, Watkins SC, Gollin SM, Saunders WS . Resolution of anaphase bridges in cancer cells. Chromosoma 2004; 112: 389–397.

    PubMed  Google Scholar 

  90. Chan KL, Hickson ID . New insights into the formation and resolution of ultra-fine anaphase bridges. Sem Cell Dev Biol 2011; 22: 906–912.

    CAS  Google Scholar 

  91. Nigg EA . Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2002; 2: 815–825.

    CAS  PubMed  Google Scholar 

  92. Van Der Waal MS, Hengeveld RCC, van der Horst A, Lens SMA . Cell division control by the chromosomal passenger complex. Exp Cell Res 2012; 318: 1407–1420.

    CAS  PubMed  Google Scholar 

  93. Jeyaprakash AA, Klein UR, Lindner D, Ebert J, Nigg EA, Conti E . Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell 2007; 131: 271–285.

    CAS  PubMed  Google Scholar 

  94. Gassmann R, Carvalho A, Henzing AJ, Ruchaud S, Hudson DF, Honda R et al. Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J Cell Biol 2004; 166: 179–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Carvalho A, Carmena M, Sambade C, Earnshaw WC, Wheatley SP . Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci 2003; 116 (Pt 14): 2987–2998.

    CAS  PubMed  Google Scholar 

  96. Petronczki M, Glotzer M, Kraut N, Peters J-M . Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev Cell 2007; 12: 713–725.

    CAS  PubMed  Google Scholar 

  97. Huang Y-F, Chang MD-T, Shieh S-Y . TTK/hMps1 mediates the p53-dependent postmitotic checkpoint by phosphorylating p53 at Thr18. Mol Cell Biol 2009; 29: 2935–2944.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Uetake Y, Sluder G . Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr Biol 2010; 20: 1666–1671.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ganem NJ, Pellman D . Limiting the proliferation of polyploid cells. Cell 2007; 131: 437–440.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MTH is supported by a Human Frontier Science Program Long Term Fellowship and a Japan Society for the Promotion of Science Postdoctoral Fellowships for Research Abroad. This work was supported by the Cancer Center Core Grant P30 CA014195-38 and a grant from the NIH to JK (GM087476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Karlseder.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, M., Karlseder, J. DNA damage associated with mitosis and cytokinesis failure. Oncogene 32, 4593–4601 (2013). https://doi.org/10.1038/onc.2012.615

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.615

Keywords

This article is cited by

Search

Quick links