Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors

Abstract

Cancer stem cells (CSCs), a small and elusive population of undifferentiated cancer cells within tumors that drive tumor growth and recurrence, are believed to resemble normal stem cells. Although surrogate markers have been identified and compelling CSC theoretical models abound, actual proof for the existence of CSCs can only be had retrospectively. Hence, great store has come to be placed in isolating CSCs from cancers for in-depth analysis. On the other hand, although induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine, concern exists over the inadvertent co-transplantation of partially or undifferentiated stem cells with tumorigenic capacity. Here we demonstrate that the introduction of defined reprogramming factors (OCT4, SOX2, Klf4 and c-Myc) into MCF-10A nontumorigenic mammary epithelial cells, followed by partial differentiation, transforms the bulk of cells into tumorigenic CD44+/CD24low cells with CSC properties, termed here as induced CSC-like-10A or iCSCL-10A cells. These reprogrammed cells display a malignant phenotype in culture and form tumors of multiple lineages when injected into immunocompromised mice. Compared with other transformed cell lines, cultured iCSCL-10A cells exhibit increased resistance to the chemotherapeutic compounds, Taxol and Actinomycin D, but higher susceptibility to the CSC-selective agent Salinomycin and the Pin1 inhibitor Juglone. Restored expression of the cyclin-dependent kinase inhibitor p16INK4a abrogated the CSC properties of iCSCL-10A cells, by inducing cellular senescence. This study provides some insight into the potential oncogenicity that may arise via cellular reprogramming, and could represent a valuable in vitro model for studying the phenotypic traits of CSCs per se.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Visvader JE, Lindeman GJ . Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755–768.

    Article  CAS  PubMed  Google Scholar 

  2. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  4. Clevers H . The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313–319.

    Article  CAS  PubMed  Google Scholar 

  5. Dean M, Fojo T, Bates S . Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5: 275–284.

    Article  CAS  PubMed  Google Scholar 

  6. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138: 645–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dick JE . Looking ahead in cancer stem cell research. Nat Biotechnol 2009; 27: 44–46.

    Article  CAS  PubMed  Google Scholar 

  8. Berry PA, Maitland NJ, Collins AT . Androgen receptor signalling in prostate: effects of stromal factors on normal and cancer stem cells. Mol Cell Endocrinol 2008; 288: 30–37.

    Article  CAS  PubMed  Google Scholar 

  9. Dey D, Saxena M, Paranjape AN, Krishnan V, Giraddi R, Kumar MV et al. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture. PLoS One 2009; 4: e5329.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rosen JM, Jordan CT . The increasing complexity of the cancer stem cell paradigm. Science 2009; 324: 1670–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lessard J, Sauvageau G . Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423: 255–260.

    Article  CAS  PubMed  Google Scholar 

  12. Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 2009; 27: 91–97.

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  14. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  15. Miyoshi N, Ishii H, Nagai K, Hoshino H, Mimori K, Tanaka F et al. Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci USA 2010; 107: 40–45.

    Article  CAS  PubMed  Google Scholar 

  16. Carette JE, Pruszak J, Varadarajan M, Blomen VA, Gokhale S, Camargo FD et al. Generation of iPSCs from cultured human malignant cells. Blood 2010; 115: 4039–4042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Utikal J, Maherali N, Kulalert W, Hochedlinger K . Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 2009; 122 (Pt 19): 3502–3510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cowell JK, LaDuca J, Rossi MR, Burkhardt T, Nowak NJ, Matsui S . Molecular characterization of the t(3;9) associated with immortalization in the MCF10A cell line. Cancer Genet Cytogenet 2005; 163: 23–29.

    Article  CAS  PubMed  Google Scholar 

  19. Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 1990; 50: 6075–6086.

    CAS  PubMed  Google Scholar 

  20. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  21. Nishi M, Akutsu H, Masui S, Kondo A, Nagashima Y, Kimura H et al. A distinct role for Pin1 in the induction and maintenance of pluripotency. J Biol Chem 2011; 286: 11593–11603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Desbaillets I, Ziegler U, Groscurth P, Gassmann M . Embryoid bodies: an in vitro model of mouse embryogenesis. Exp Physiol 2000; 85: 645–651.

    Article  CAS  PubMed  Google Scholar 

  23. Liu M, Casimiro MC, Wang C, Shirley LA, Jiao X, Katiyar S et al. p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proc Natl Acad Sci USA 2009; 106: 19035–19039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bhat-Nakshatri P, Appaiah H, Ballas C, Pick-Franke P, Goulet R, Badve S et al. SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer 2010; 10: 411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu PJ, Zhou XZ, Liou YC, Noel JP, Lu KP . Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem 2002; 277: 2381–2384.

    Article  CAS  PubMed  Google Scholar 

  27. Scaffidi P, Misteli T . In vitro generation of human cells with cancer stem cell properties. Nat Cell Biol 2011; 13: 1051–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hochedlinger K, Yamada Y, Beard C, Jaenisch R . Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 2005; 121: 465–477.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 2008; 283: 17969–17978.

    Article  CAS  PubMed  Google Scholar 

  30. Wei D, Kanai M, Huang S, Xie K . Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 2006; 27: 23–31.

    Article  CAS  PubMed  Google Scholar 

  31. Clark AT . The stem cell identity of testicular cancer. Stem Cell Rev 2007; 3: 49–59.

    Article  CAS  PubMed  Google Scholar 

  32. Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 2012; 31: 1354–1365.

    Article  CAS  PubMed  Google Scholar 

  33. Lengerke C, Fehm T, Kurth R, Neubauer H, Scheble V, Muller F et al. Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer 2011; 11: 42.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A . Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 2008; 6: e253.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sarig R, Rivlin N, Brosh R, Bornstein C, Kamer I, Ezra O et al. Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med 2010; 207: 2127–2140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen L, Kasai T, Li Y, Sugii Y, Jin G, Okada M et al. A model of cancer stem cells derived from mouse induced pluripotent stem cells. PLoS One 2012; 7: e33544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . Creation of human tumour cells with defined genetic elements. Nature 1999; 400: 464–468.

    Article  CAS  PubMed  Google Scholar 

  38. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007; 39: 237–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 2009; 460: 1136–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 2009; 460: 1145–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 2009; 460: 1149–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 2009; 23: 2134–2139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moretto-Zita M, Jin H, Shen Z, Zhao T, Briggs SP, Xu Y . Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc Natl Acad Sci USA 2010; 107: 13312–13317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  45. Ryo A, Uemura H, Ishiguro H, Saitoh T, Yamaguchi A, Perrem K et al. Stable suppression of tumorigenicity by Pin1-targeted RNA interference in prostate cancer. Clin Cancer Res 2005; 11: 7523–7531.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Kondo, T Taniguchi, Y Kojima, Y Watanabe, M Tanaka and N Sakurai for technical assistance and discussion. This work was in part supported by Grant-in-Aid for Scientific Research on Innovative Areas and the Japan Health Sciences Foundation, and grants from the Uehara Memorial Foundation and Takeda Science Foundation to AR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Ryo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishi, M., Sakai, Y., Akutsu, H. et al. Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene 33, 643–652 (2014). https://doi.org/10.1038/onc.2012.614

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.614

Keywords

This article is cited by

Search

Quick links