Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Stem cell CD44v isoforms promote intestinal cancer formation in Apc(min) mice downstream of Wnt signaling

Abstract

A gene signature specific for intestinal stem cells (ISCs) has recently been shown to predict relapse in colorectal cancer (CRC) but the tumorigenic role of individual signature genes remains poorly defined. A prominent ISC-signature gene is the cancer stem cell marker CD44, which encodes various splice variants comprising a diverse repertoire of adhesion and signaling molecules. Using Lgr5 as ISC marker, we have fluorescence-activated cell sorting-purified ISCs to define their CD44 repertoire. ISCs display a specific set of CD44 variant isoforms (CD44v), but remarkably lack the CD44 standard (CD44s) isoform. These CD44v also stand-out in transformed human ISCs isolated from microadenomas of familial adenomatous polyposis patients. By employing knock-in mice expressing either CD44v4-10 or CD44s, we demonstrate that the CD44v isoform, but not CD44s, promotes adenoma initiation in ApcMin/+mice. Our data identify CD44v as component of the ISCs program critical for tumor initiation, and as potential treatment target in CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Noah TK, Donahue B, Shroyer NF . Intestinal development and differentiation. Exp Cell Res 2011; 317: 2702–2710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuhnert F, Davis CR, Wang HT, Chu P, Lee M, Yuan J et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci USA 2004; 101: 266–271.

    Article  CAS  PubMed  Google Scholar 

  3. Nusse R . Wnt signaling and stem cell control. Cell Res 2008; 18: 523–527.

    Article  CAS  PubMed  Google Scholar 

  4. Kinzler KW, Vogelstein B . Lessons from hereditary colorectal cancer. Cell 1996; 87: 159–170.

    Article  CAS  PubMed  Google Scholar 

  5. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 1997; 275: 1784–1787.

    Article  CAS  PubMed  Google Scholar 

  6. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275: 1787–1790.

    Article  CAS  PubMed  Google Scholar 

  7. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009; 457: 608–611.

    Article  CAS  PubMed  Google Scholar 

  8. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002; 111: 241–250.

    Article  CAS  PubMed  Google Scholar 

  9. Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 2004; 18: 1385–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M, Anti M et al. The intestinal Wnt/TCF signature. Gastroenterology 2007; 132: 628–632.

    Article  CAS  PubMed  Google Scholar 

  11. van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A, Stange DE et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 2009; 136: 903–912.

    Article  CAS  PubMed  Google Scholar 

  12. Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 2011; 8: 511–524.

    Article  CAS  PubMed  Google Scholar 

  13. Heider KH, Hofmann M, Hors E, van den Berg F, Ponta H, Herrlich P et al. A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. J Cell Biol 1993; 120: 227–233.

    Article  CAS  PubMed  Google Scholar 

  14. Wielenga VJ, Heider KH, Offerhaus GJ, Adolf GR, van den Berg FM, Ponta H et al. Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res 1993; 53: 4754–4756.

    CAS  PubMed  Google Scholar 

  15. Mulder JW, Kruyt PM, Sewnath M, Oosting J, Seldenrijk CA, Weidema WF et al. Colorectal cancer prognosis and expression of exon-v6-containing CD44 proteins. Lancet 1994; 344: 1470–1472.

    Article  CAS  PubMed  Google Scholar 

  16. Zoller M . CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 2011; 11: 254–267.

    Article  PubMed  Google Scholar 

  17. Bennett KL, Modrell B, Greenfield B, Bartolazzi A, Stamenkovic I, Peach R et al. Regulation of CD44 binding to hyaluronan by glycosylation of variably spliced exons. J Cell Biol 1995; 131: 1623–1633.

    Article  CAS  PubMed  Google Scholar 

  18. van der Voort R, Taher TE, Wielenga VJ, Spaargaren M, Prevo R, Smit L et al. Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J Biol Chem 1999; 274: 6499–6506.

    Article  CAS  PubMed  Google Scholar 

  19. Jackson DG, Bell JI, Dickinson R, Timans J, Shields J, Whittle N . Proteoglycan forms of the lymphocyte homing receptor CD44 are alternatively spliced variants containing the v3 exon. J Cell Biol 1995; 128: 673–685.

    Article  CAS  PubMed  Google Scholar 

  20. Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 1999; 154: 515–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104: 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeilstra J, Joosten SP, Dokter M, Verwiel E, Spaargaren M, Pals ST . Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis. Cancer Res 2008; 68: 3655–3661.

    Article  CAS  PubMed  Google Scholar 

  23. Wielenga VJ, van der Neut R, Offerhaus GJ, Pals ST . CD44 glycoproteins in colorectal cancer: expression, function, and prognostic value. Adv Cancer Res 2000; 77: 169–187.

    Article  CAS  PubMed  Google Scholar 

  24. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449: 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  25. van Weering DH, Baas PD, Bos JL . A PCR-based method for the analysis of human CD44 splice products. PCR Methods Appl 1993; 3: 100–106.

    Article  CAS  PubMed  Google Scholar 

  26. Boivin GP, Washington K, Yang K, Ward JM, Pretlow TP, Russell R et al. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 2003; 124: 762–777.

    Article  PubMed  Google Scholar 

  27. Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H . CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev 2002; 16: 3074–3086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915–925.

    Article  CAS  PubMed  Google Scholar 

  29. Di Renzo MF, Olivero M, Giacomini A, Porte H, Chastre E, Mirossay L et al. Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res 1995; 1: 147–154.

    CAS  PubMed  Google Scholar 

  30. Wielenga VJ, van der Voort R, Taher TE, Smit L, Beuling EA, van Krimpen C et al. Expression of c-Met and heparan-sulfate proteoglycan forms of CD44 in colorectal cancer. Am J Pathol 2000; 157: 1563–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boon EM, van der Neut R, van de Wetering M, Clevers H, Pals ST . Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res 2002; 62: 5126–5128.

    CAS  PubMed  Google Scholar 

  32. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010; 12: 468–476.

    Article  CAS  PubMed  Google Scholar 

  33. van der Voort R, Manten-Horst E, Smit L, Ostermann E, van den Berg F, Pals ST . Binding of cell-surface expressed CD44 to hyaluronate is dependent on splicing and cell type. Biochem Biophys Res Commun 1995; 214: 137–144.

    Article  CAS  PubMed  Google Scholar 

  34. Toole BP . Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 2004; 4: 528–539.

    Article  CAS  PubMed  Google Scholar 

  35. Mantovani A, Allavena P, Sica A, Balkwill F . Cancer-related inflammation. Nature 2008; 454: 436–444.

    Article  CAS  PubMed  Google Scholar 

  36. Ramakers C, Ruijter JM, Deprez RH, Moorman AF . Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003; 339: 62–66.

    Article  CAS  PubMed  Google Scholar 

  37. van der Neut R, Krimpenfort P, Calafat J, Niessen CM, Sonnenberg A . Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice. Nat Genet 1996; 13: 366–369.

    Article  CAS  PubMed  Google Scholar 

  38. Schmits R, Filmus J, Gerwin N, Senaldi G, Kiefer F, Kundig T et al. CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood 1997; 90: 2217–2233.

    CAS  PubMed  Google Scholar 

  39. McCart AE, Vickaryous NK, Silver A . Apc mice: models, modifiers and mutants. Pathol Res Pract 2008; 204: 479–490.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Dutch Cancer Society. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S T Pals.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeilstra, J., Joosten, S., van Andel, H. et al. Stem cell CD44v isoforms promote intestinal cancer formation in Apc(min) mice downstream of Wnt signaling. Oncogene 33, 665–670 (2014). https://doi.org/10.1038/onc.2012.611

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.611

Keywords

This article is cited by

Search

Quick links