Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The mutant p53 mouse as a pre-clinical model

Abstract

The p53 tumor-suppressor pathway is dismantled in the development of most cancers. Mice with various p53 mutant alleles either singly or in combination with other genetic alterations are predisposed to tumor development. Here, we review studies utilizing p53 mutant mice that have recapitulated and informed clinical observations. These studies have demonstrated the p53 contribution, sometimes beneficial and sometimes detrimental, to treatment response in lymphomas, and lung and breast cancers. Further, we examine how p53 mutant mouse models have been used to test the efficacy of p53 reactivation as a therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  CAS  PubMed  Google Scholar 

  2. Soussi T . TP53 mutations in human cancer: database reassessment and prospects for the next decade. Adv Cancer Res 2011; 110: 107–139.

    Article  CAS  PubMed  Google Scholar 

  3. Riley T, Sontag E, Chen P, Levine A . Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008; 9: 402–412.

    Article  CAS  PubMed  Google Scholar 

  4. Chabner BA, Roberts TG . Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 2005; 5: 65–72.

    Article  CAS  PubMed  Google Scholar 

  5. Vousden KH . Activation of the p53 tumor suppressor protein. Biochim Biophys Acta 2002; 1602: 47–59.

    CAS  PubMed  Google Scholar 

  6. Lowe SW, Cepero E, Evan G . Intrinsic tumour suppression. Nature 2004; 432: 307–315.

    Article  CAS  PubMed  Google Scholar 

  7. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  8. Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T et al. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 1994; 78: 703–711.

    Article  CAS  PubMed  Google Scholar 

  9. Fanidi A, Harrington EA, Evan GI . Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 1992; 359: 554–556.

    Article  CAS  PubMed  Google Scholar 

  10. Soussi T, Lozano G . p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 2005; 331: 834–842.

    Article  CAS  PubMed  Google Scholar 

  11. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. Restoration of p53 function leads to tumour regression in vivo. Nature 2007; 445: 661–665.

    Article  CAS  PubMed  Google Scholar 

  12. Martins CP, Brown-Swigart L, Evan GI . Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 2006; 127: 1323–1334.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Suh YA, Fuller MY, Jackson JG, Xiong S, Terzian T et al. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. J Clin Invest 2011; 121: 893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 2008; 22: 1337–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christophorou MA, Martin-Zanca D, Soucek L, Lawlor ER, Brown-Swigart L, Verschuren EW et al. Temporal dissection of p53 function in vitro and in vivo. Nat Genet 2005; 37: 718–726.

    Article  CAS  PubMed  Google Scholar 

  17. Junttila MR, Karnezis AN, Garcia D, Madriles F, Kortlever RM, Rostker F et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 2010; 468: 567–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feldser DM, Kostova KK, Winslow MM, Taylor SE, Cashman C, Whittaker CA et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 2010; 468: 572–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lowe SW, Sherr CJ . Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 2003; 13: 77–83.

    Article  CAS  PubMed  Google Scholar 

  20. Suh YA, Post SM, Elizondo-Fraire AC, Maccio DR, Jackson JG, El-Naggar AK et al. Multiple stress signals activate mutant p53 in vivo. Cancer Res 2011; 71: 7168–7175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004; 119: 861–872.

    Article  CAS  PubMed  Google Scholar 

  22. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004; 119: 847–860.

    Article  CAS  PubMed  Google Scholar 

  23. Montes de Oca Luna R, Wagner DS, Lozano G . Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378: 203–206.

    Article  CAS  PubMed  Google Scholar 

  24. Ringshausen I, O'Shea CC, Finch AJ, Swigart LB, Evan GI . Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 2006; 10: 501–514.

    Article  CAS  PubMed  Google Scholar 

  25. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW . Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51 (23 Pt 1): 6304–6311.

    CAS  PubMed  Google Scholar 

  26. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992; 71: 587–597.

    Article  CAS  PubMed  Google Scholar 

  27. MacCallum DE, Hupp TR, Midgley CA, Stuart D, Campbell SJ, Harper A et al. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 1996; 13: 2575–2587.

    CAS  PubMed  Google Scholar 

  28. Lane DP . Cancer. p53, guardian of the genome. Nature 1992; 358: 15–16.

    Article  CAS  PubMed  Google Scholar 

  29. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T . p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993; 362: 847–849.

    Article  CAS  PubMed  Google Scholar 

  30. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362: 849–852.

    Article  CAS  PubMed  Google Scholar 

  31. Hurley LH . DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2002; 2: 188–200.

    Article  CAS  PubMed  Google Scholar 

  32. Weller M . Predicting response to cancer chemotherapy: the role of p53. Cell Tissue Res 1998; 292: 435–445.

    Article  CAS  PubMed  Google Scholar 

  33. Zenz T, Benner A, Dohner H, Stilgenbauer S . Chronic lymphocytic leukemia and treatment resistance in cancer: the role of the p53 pathway. Cell Cycle 2008; 7: 3810–3814.

    Article  CAS  PubMed  Google Scholar 

  34. Bertheau P, Espie M, Turpin E, Lehmann J, Plassa LF, Varna M et al. TP53 status and response to chemotherapy in breast cancer. Pathobiology 2008; 75: 132–139.

    Article  CAS  PubMed  Google Scholar 

  35. Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 2001; 28: 266–271.

    Article  CAS  PubMed  Google Scholar 

  36. Rottenberg S, Nygren AO, Pajic M, van Leeuwen FW, van der Heijden I, van de Wetering K et al. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc Nat Acad Sci USA 2007; 104: 12117–12122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL . Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 1999; 13: 2658–2669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmitt CA, Rosenthal CT, Lowe SW . Genetic analysis of chemoresistance in primary murine lymphomas. Nat Med 2000; 6: 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  39. Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR, Lowe SW . INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 1999; 13: 2670–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abbas HA, Pant V, Lozano G . The ups and downs of p53 regulation in hematopoietic stem cells. Cell Cycle 2011; 10: 3257–3262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abbas HA, Maccio DR, Coskun S, Jackson JG, Hazen AL, Sills TM et al. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell 2010; 7: 606–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lotem J, Sachs L . Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood 1993; 82: 1092–1096.

    CAS  PubMed  Google Scholar 

  43. Komarova EA, Kondratov RV, Wang K, Christov K, Golovkina TV, Goldblum JR et al. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene 2004; 23: 3265–3271.

    Article  CAS  PubMed  Google Scholar 

  44. Kirsch DG, Santiago PM, di Tomaso E, Sullivan JM, Hou WS, Dayton T et al. p53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science 2010; 327: 593–596.

    Article  CAS  PubMed  Google Scholar 

  45. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13: 2329–2334.

    Article  CAS  PubMed  Google Scholar 

  46. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 2005; 11: 5678–5685.

    Article  CAS  PubMed  Google Scholar 

  47. Bertheau P, Plassa F, Espie M, Turpin E, de Roquancourt A, Marty M et al. Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet 2002; 360: 852–854.

    Article  CAS  PubMed  Google Scholar 

  48. Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE et al. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 1996; 2: 811–814.

    Article  CAS  PubMed  Google Scholar 

  49. Berns EM, Foekens JA, Vossen R, Look MP, Devilee P, Henzen-Logmans SC et al. Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. Cancer Res 2000; 60: 2155–2162.

    CAS  PubMed  Google Scholar 

  50. Bonetti A, Zaninelli M, Leone R, Cetto GL, Pelosi G, Biolo S et al. bcl-2 but not p53 expression is associated with resistance to chemotherapy in advanced breast cancer. Clin Cancer Res 1998; 4: 2331–2336.

    CAS  PubMed  Google Scholar 

  51. Bearss DJ, Subler MA, Hundley JE, Troyer DA, Salinas RA, Windle JJ . Genetic determinants of response to chemotherapy in transgenic mouse mammary and salivary tumors. Oncogene 2000; 19: 1114–1122.

    Article  CAS  PubMed  Google Scholar 

  52. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE . Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 1988; 55: 619–625.

    Article  CAS  PubMed  Google Scholar 

  53. Jackson JG, Pant V, Li Q, Chang LL, Quintas-Cardama A, Garza D et al. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell 2012; 21: 793–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 2012; 150: 165–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6: 2853–2868.

    Article  CAS  PubMed  Google Scholar 

  56. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008; 133: 1019–1031.

    Article  CAS  PubMed  Google Scholar 

  57. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133: 1006–1018.

    Article  CAS  PubMed  Google Scholar 

  58. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR . Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 2008; 132: 363–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karnoub AE, Weinberg RA . Chemokine networks and breast cancer metastasis. Breast Dis 2006; 26: 75–85.

    Article  CAS  PubMed  Google Scholar 

  60. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007; 117: 326–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 1999; 104: 263–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Waldman T, Zhang Y, Dillehay L, Yu J, Kinzler K, Vogelstein B et al. Cell-cycle arrest versus cell death in cancer therapy. Nat Med 1997; 3: 1034–1036.

    Article  CAS  PubMed  Google Scholar 

  63. Waldman T, Kinzler KW, Vogelstein B . p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995; 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  64. Daniels M, Goh F, Wright CM, Sriram KB, Relan V, Clarke BE et al. Whole genome sequencing for lung cancer. J Thorac Dis 2012; 4: 155–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 2012; 483: 613–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vaahtomeri K, Makela TP . Molecular mechanisms of tumor suppression by LKB1. FEBS Lett 2011; 585: 944–951.

    Article  CAS  PubMed  Google Scholar 

  67. Barrington RE, Subler MA, Rands E, Omer CA, Miller PJ, Hundley JE et al. A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol Cell Biol 1998; 18: 85–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C et al. Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature 2009; 462: 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xue W, Meylan E, Oliver TG, Feldser DM, Winslow MM, Bronson R et al. Response and resistance to NF-kappaB inhibitors in mouse models of lung adenocarcinoma. Cancer Discov 2011; 1: 236–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Lozano.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, J., Lozano, G. The mutant p53 mouse as a pre-clinical model. Oncogene 32, 4325–4330 (2013). https://doi.org/10.1038/onc.2012.610

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.610

Keywords

This article is cited by

Search

Quick links