Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1

Abstract

Previous studies have demonstrated that microRNA (miRNA) expression is altered in human cancer. However, the molecular mechanism underlying these changes in miRNA expression remains unclear. In this study, we investigated the epigenetic modification of miR-124 genes and the potential function of miR-124 in pancreatic cancer. Using pyrosequencing analysis, we found that miR-124 genes (including miR-124-1, miR-124-2 and miR-124-3) are highly methylated in pancreatic cancer tissues compared with in non-cancerous tissues. Hypermethylation mediated the silencing of miR-124, which was a frequent event in pancreatic duct adenocarcinoma (PDAC). Furthermore, miR-124 downregulation was significantly associated with worse survival of PDAC patients. Functional studies showed that miR-124 inhibited cell proliferation, invasion and metastasis. Furthermore, we characterized Rac1 as a direct target of miR-124, and miR-124 interacted with the 3'-untranslated region of Rac1, which we showed to be a putative tumor promoter in pancreatic cancer. Thus, the miR-124-mediated downregulation of Rac1 led to the inactivation of the MKK4-JNK-c-Jun pathway. Therefore, our study demonstrates that miR-124 is a tumor suppressor miRNA that is epigenetically silenced in pancreatic cancer. Our findings suggest a previously unidentified molecular mechanism involved in the progression and metastasis of pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    Article  PubMed  Google Scholar 

  2. Li D, Xie K, Wolff R, Abbruzzese JL . Pancreatic cancer. Lancet 2004; 363: 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  3. Murphy JD, Adusumilli S, Griffith KA, Ray ME, Zalupski MM, Lawrence TS et al. Full-dose gemcitabine and concurrent radiotherapy for unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 2007; 68: 801–808.

    Article  CAS  PubMed  Google Scholar 

  4. Ouyang H, Wang P, Meng Z, Chen Z, Yu E, Jin H et al. Multimodality treatment of pancreatic cancer with liver metastases using chemotherapy, radiation therapy, and/or Chinese herbal medicine. Pancreas 2011; 40: 120–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007; 25: 1960–1966.

    Article  CAS  PubMed  Google Scholar 

  6. Kim VN, Han J, Siomi MC . Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10: 126–139.

    Article  CAS  PubMed  Google Scholar 

  7. Iorio MV, Croce CM . MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 2009; 27: 5848–5856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jamieson NB, Morran DC, Morton JP, Ali A, Dickson EJ, Carter CR et al. MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin Cancer Res 2012; 18: 534–545.

    Article  CAS  PubMed  Google Scholar 

  9. Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 2008; 13: 48–57.

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Zhang Y, Ding J, Wu K, Fan D . Survival prediction of gastric cancer by a seven-microRNA signature. Gut 2009; 59: 579–585.

    Article  PubMed  Google Scholar 

  11. Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007; 26: 4442–4452.

    Article  CAS  PubMed  Google Scholar 

  12. Esquela-Kerscher A, Slack FJ . Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    Article  CAS  PubMed  Google Scholar 

  13. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007; 67: 1424–1429.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang S, Hao J, Xie F, Hu X, Liu C, Tong J et al. Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis 2011; 32: 1183–1189.

    Article  CAS  PubMed  Google Scholar 

  15. Hanoun N, Delpu Y, Suriawinata AA, Bournet B, Bureau C, Selves J et al. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clin Chem 2010; 56: 1107–1118.

    Article  CAS  PubMed  Google Scholar 

  16. Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N et al. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 2009; 9: 293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 2008; 7: 2591–2600.

    Article  CAS  PubMed  Google Scholar 

  18. Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J . miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 2010; 31: 766–776.

    Article  CAS  PubMed  Google Scholar 

  19. Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP et al. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 2011; 61: 278–289.

    Article  PubMed  Google Scholar 

  20. Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA et al. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer 2010; 9: 167.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Takai D, Jones PA . The CpG island searcher: a new WWW resource. In Silico Biol 2003; 3: 235–240.

    CAS  PubMed  Google Scholar 

  22. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 2006; 38: 1378–1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV . Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 1997; 390: 632–636.

    Article  CAS  PubMed  Google Scholar 

  24. Chan AY, Coniglio SJ, Chuang YY, Michaelson D, Knaus UG, Philips MR et al. Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene 2005; 24: 7821–7829.

    Article  CAS  PubMed  Google Scholar 

  25. Grijelmo C, Rodrigue C, Svrcek M, Bruyneel E, Hendrix A, de Wever O et al. Proinvasive activity of BMP-7 through SMAD4/src-independent and ERK/Rac/JNK-dependent signaling pathways in colon cancer cells. Cell Signal 2007; 19: 1722–1732.

    Article  CAS  PubMed  Google Scholar 

  26. Kanwal R, Gupta S . Epigenetics and cancer. J Appl Physiol 2012; 109: 598–605.

    Article  Google Scholar 

  27. Kong KL, Kwong DL, Chan TH, Law SY, Chen L, Li Y et al. MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut 2011; 61: 33–42.

    Article  PubMed  Google Scholar 

  28. Zhang Y, Yan LX, Wu QN, Du ZM, Chen J, Liao DZ et al. miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res 2011; 71: 3552–3562.

    Article  CAS  PubMed  Google Scholar 

  29. Kubo T, Toyooka S, Tsukuda K, Sakaguchi M, Fukazawa T, Soh J et al. Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma. Clin Cancer Res 2011; 17: 4965–4974.

    Article  CAS  PubMed  Google Scholar 

  30. Ando T, Yoshida T, Enomoto S, Asada K, Tatematsu M, Ichinose M et al. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer 2009; 124: 2367–2374.

    Article  CAS  PubMed  Google Scholar 

  31. Griffin JF, Smalley SR, Jewell W, Paradelo JC, Reymond RD, Hassanein RE et al. Patterns of failure after curative resection of pancreatic carcinoma. Cancer 1990; 66: 56–61.

    Article  CAS  PubMed  Google Scholar 

  32. Qiu RG, Chen J, Kirn D, McCormick F, Symons M . An essential role for Rac in Ras transformation. Nature 1995; 374: 457–459.

    Article  CAS  PubMed  Google Scholar 

  33. Rathinam R, Berrier A, Alahari SK . Role of Rho GTPases and their regulators in cancer progression. Front Biosci 2011; 17: 2561–2571.

    Article  Google Scholar 

  34. Heid I, Lubeseder-Martellato C, Sipos B, Mazur PK, Lesina M, Schmid RM et al. Early requirement of Rac1 in a mouse model of pancreatic cancer. Gastroenterology 2011; 141: 730 e711–717.

    Article  Google Scholar 

  35. Medina PP, Slack FJ . Inhibiting microRNA function in vivo. Nat Methods 2009; 6: 37–38.

    Article  CAS  PubMed  Google Scholar 

  36. Mardin WA, Mees ST . MicroRNAs: novel diagnostic and therapeutic tools for pancreatic ductal adenocarcinoma? Ann Surg Oncol 2009; 16: 3183–3189.

    Article  PubMed  Google Scholar 

  37. Greither T, Grochola LF, Udelnow A, Lautenschlager C, Wurl P, Taubert H . Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer 2010; 126: 73–80.

    Article  CAS  PubMed  Google Scholar 

  38. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007; 297: 1901–1908.

    Article  CAS  PubMed  Google Scholar 

  39. Hummel R, Hussey DJ, Haier J . MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer 2010; 46: 298–311.

    Article  CAS  PubMed  Google Scholar 

  40. Lekanne Deprez RH, Fijnvandraat AC, Ruijter JM, Moorman AF . Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Anal Biochem 2002; 307: 63–69.

    Article  CAS  PubMed  Google Scholar 

  41. Wang P, Chen Z, Meng ZQ, Fan J, Luo JM, Liang W et al. Dual role of Ski in pancreatic cancer cells: tumor-promoting versus metastasis-suppressive function. Carcinogenesis 2009; 30: 1497–1506.

    Article  CAS  PubMed  Google Scholar 

  42. Shi WD, Meng ZQ, Chen Z, Lin JH, Zhou ZH, Liu LM . Identification of liver metastasis-related genes in a novel human pancreatic carcinoma cell model by microarray analysis. Cancer Lett 2009; 283: 84–91.

    Article  CAS  PubMed  Google Scholar 

  43. Azuma H, Ehata S, Miyazaki H, Watabe T, Maruyama O, Imamura T et al. Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells. J Natl Cancer Inst 2005; 97: 1734–1746.

    Article  CAS  PubMed  Google Scholar 

  44. Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 2009; 69: 1135–1142.

    Article  CAS  PubMed  Google Scholar 

  45. Chen L, Chan TH, Yuan YF, Hu L, Huang J, Ma S et al. CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J Clin Invest 2010; 120: 1178–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nuovo GJ, Elton TS, Nana-Sinkam P, Volinia S, Croce CM, Schmittgen TD . A methodology for the combined in situ analyses of the precursor and mature forms of microRNAs and correlation with their putative targets. Nat Protoc 2009; 4: 107–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao WG, Yu SN, Lu ZH, Ma YH, Gu YM, Chen J . The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 2010; 31: 1726–1733.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Zude Xu from Department of Pathology, Huashan Hospital, Fudan University, Shanghai for providing human pancreatic cancer samples. This study was supported by National Science Fundation of China (81001061); Shanghai Nature Science Fund, Shanghai, China (09ZR1406800); Doctoral Programs Foundation of Ministry of Education of China (20090071120076); Shanghai Science and Technology Committee Rising-Star Program (11QA1401300); and Medical Talents Training Program of Health Bureau of Shanghai (XYQ2011008) and 985 research grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z Chen, Z Meng or L Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Chen, L., Zhang, J. et al. Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 33, 514–524 (2014). https://doi.org/10.1038/onc.2012.598

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.598

Keywords

This article is cited by

Search

Quick links