Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TRIM3, a tumor suppressor linked to regulation of p21Waf1/Cip1

Abstract

The TRIM family of genes is largely studied because of their roles in development, differentiation and host cell antiviral defenses; however, roles in cancer biology are emerging. Loss of heterozygosity of the TRIM3 locus in 20% of human glioblastomas raised the possibility that this NHL-domain containing member of the TRIM gene family might be a mammalian tumor suppressor. Consistent with this, reducing TRIM3 expression increased the incidence of and accelerated the development of platelet-derived growth factor -induced glioma in mice. Furthermore, TRIM3 can bind to the cdk inhibitor p21WAF1/CIP1. Thus, we conclude that TRIM3 is a tumor suppressor mapping to chromosome 11p15.5 and that it might block tumor growth by sequestering p21 and preventing it from facilitating the accumulation of cyclin D1–cdk4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Huse JT, Holland EC . Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 2010; 10: 319–331.

    Article  CAS  Google Scholar 

  2. Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PloS one 2009; 4: e7752.

    Article  Google Scholar 

  3. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–1812.

    Article  CAS  Google Scholar 

  4. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell 2010; 17: 98–110.

    Article  CAS  Google Scholar 

  5. Vitucci M, Hayes DN, Miller CR . Gene expression profiling of gliomas: merging genomic and histopathological classification for personalised therapy. Br J Cancer 2011; 104: 545–553.

    Article  CAS  Google Scholar 

  6. Barrett LE, Granot Z, Coker C, Iavarone A, Hambardzumyan D, Holland EC et al. Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma. Cancer cell 2012; 21: 11–24.

    Article  CAS  Google Scholar 

  7. Chen J, McKay RM, Parada LF . Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 2012; 149: 36–47.

    Article  CAS  Google Scholar 

  8. Boulay JL, Stiefel U, Taylor E, Dolder B, Merlo A, Hirth F . Loss of heterozygosity of TRIM3 in malignant gliomas. BMC cancer 2009; 9: 71.

    Article  Google Scholar 

  9. Nisole S, Stoye JP, Saib A . TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 2005; 3: 799–808.

    Article  CAS  Google Scholar 

  10. Hatakeyama S . TRIM proteins and cancer. Nat Rev Cancer 2011; 11: 792–804.

    Article  CAS  Google Scholar 

  11. Wulczyn FG, Cuevas E, Franzoni E, Rybak A . MiRNA need a TRIM regulation of miRNA activity by Trim-NHL proteins. Adv Exp Med Biol 2010; 700: 85–105.

    Article  CAS  Google Scholar 

  12. Reichert H . Drosophila neural stem cells: cell cycle control of self-renewal, differentiation, and termination in brain development. Results Probl Cell Differ 2011; 53: 529–546.

    Article  CAS  Google Scholar 

  13. Arama E, Dickman D, Kimchie Z, Shearn A, Lev Z . Mutations in the beta-propeller domain of the Drosophila brain tumor (brat) protein induce neoplasm in the larval brain. Oncogene 2000; 19: 3706–3716.

    Article  CAS  Google Scholar 

  14. Betschinger J, Mechtler K, Knoblich JA . Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 2006; 124: 1241–1253.

    Article  CAS  Google Scholar 

  15. Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA . The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell 2008; 14: 535–546.

    Article  CAS  Google Scholar 

  16. Lee CY, Wilkinson BD, Siegrist SE, Wharton RP, Doe CQ . Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell 2006; 10: 441–449.

    Article  CAS  Google Scholar 

  17. Januschke J, Gonzalez C . Drosophila asymmetric division, polarity and cancer. Oncogene 2008; 27: 6994–7002.

    Article  CAS  Google Scholar 

  18. Bello B, Reichert H, Hirth F . The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 2006; 133: 2639–2648.

    Article  CAS  Google Scholar 

  19. Choksi SP, Southall TD, Bossing T, Edoff K, de Wit E, Fischer BE et al. Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell 2006; 11: 775–789.

    Article  CAS  Google Scholar 

  20. Herranz H, Hong X, Perez L, Ferreira A, Olivieri D, Cohen SM et al. The miRNA machinery targets Mei-P26 and regulates Myc protein levels in the Drosophila wing. EMBO J 2010; 29: 1688–1698.

    Article  CAS  Google Scholar 

  21. Schwamborn JC, Berezikov E, Knoblich JA . The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 2009; 136: 913–925.

    Article  CAS  Google Scholar 

  22. Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell stem cell 2009; 4: 226–235.

    Article  CAS  Google Scholar 

  23. Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell stem cell 2010; 6: 141–152.

    Article  CAS  Google Scholar 

  24. Charles NA, Holland EC . TRRAP and the maintenance of stemness in gliomas. Cell stem cell 2010; 6: 6–7.

    Article  CAS  Google Scholar 

  25. Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC . PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 2001; 15: 1913–1925.

    Article  CAS  Google Scholar 

  26. Katz AM, Amankulor NM, Pitter K, Helmy K, Squatrito M, Holland EC . Astrocyte-specific expression patterns associated with the PDGF-induced glioma microenvironment. PloS one 2012; 7: e32453.

    Article  CAS  Google Scholar 

  27. Shih AH, Dai C, Hu X, Rosenblum MK, Koutcher JA, Holland EC . Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis. Cancer Res 2004; 64: 4783–4789.

    Article  CAS  Google Scholar 

  28. Ciznadija D, Liu Y, Pyonteck SM, Holland EC, Koff A . Cyclin D1 and cdk4 mediate development of neurologically destructive oligodendroglioma. Cancer Res 2011; 71: 6174–6183.

    Article  CAS  Google Scholar 

  29. Hukkelhoven E, Liu Y, Yeh N, Ciznadija D, Blain SW, Koff A . Tyrosine phosphorylation of p21 facilitates the development of proneural glioma. J Biol Chem 2012; 287: 38523–38530.

    Article  CAS  Google Scholar 

  30. Liu Y, Yeh N, Zhu XH, Leversha M, Cordon-Cardo C, Ghossein R et al. Somatic cell type specific gene transfer reveals a tumor-promoting function for p21(Waf1/Cip1). EMBO J 2007; 26: 4683–4693.

    Article  CAS  Google Scholar 

  31. See WL, Heinberg AR, Holland EC, Resh MD . p27 deficiency is associated with migration defects in PDGF-expressing gliomas in vivo. Cell Cycle 2010; 9: 1562–1567.

    Article  CAS  Google Scholar 

  32. See WL, Miller JP, Squatrito M, Holland E, Resh MD, Koff A . Defective DNA double-strand break repair underlies enhanced tumorigenesis and chromosomal instability in p27-deficient mice with growth factor-induced oligodendrogliomas. Oncogene 2010; 29: 1720–1731.

    Article  CAS  Google Scholar 

  33. Cerami E, Demir E, Schultz N, Taylor BS, Sander C . Automated network analysis identifies core pathways in glioblastoma. PloS one 2010; 5: e8918.

    Article  Google Scholar 

  34. Cheung CC, Yang C, Berger T, Zaugg K, Reilly P, Elia AJ et al. Identification of BERP (brain-expressed RING finger protein) as a p53 target gene that modulates seizure susceptibility through interacting with GABA(A) receptors. Proc Natl Acad Sci USA 2010; 107: 11883–11888.

    Article  CAS  Google Scholar 

  35. Aktas H, Cai H, Cooper GM . Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol Cell Biol 1997; 17: 3850–3857.

    Article  CAS  Google Scholar 

  36. Yan Q, Sun W, Kujala P, Lotfi Y, Vida TA, Bean AJ . CART: an Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling. Mol Biol Cell 2005; 16: 2470–2482.

    Article  CAS  Google Scholar 

  37. Abbas T, Dutta A . p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009; 9: 400–414.

    Article  CAS  Google Scholar 

  38. Broxmeyer HE . Enhancing engraftment of cord blood cells via insight into the biology of stem/progenitor cell function. Ann N Y Acad Sci 2012; 1266: 151–160.

    Article  CAS  Google Scholar 

  39. Gao H, Ouyang X, Banach-Petrosky W, Borowsky AD, Lin Y, Kim M et al. A critical role for p27kip1 gene dosage in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 2004; 101: 17204–17209.

    Article  CAS  Google Scholar 

  40. Lee J, Kim SS . The function of p27 KIP1 during tumor development. Exp Mol Med 2009; 41: 765–771.

    Article  CAS  Google Scholar 

  41. Muraoka RS, Lenferink AE, Law B, Hamilton E, Brantley DM, Roebuck LR et al. ErbB2/Neu-induced, cyclin D1-dependent transformation is accelerated in p27-haploinsufficient mammary epithelial cells but impaired in p27-null cells. Mol Cell Biol 2002; 22: 2204–2219.

    Article  CAS  Google Scholar 

  42. Viglietto G, Motti ML, Fusco A . Understanding p27(kip1) deregulation in cancer: down-regulation or mislocalization. Cell Cycle 2002; 1: 394–400.

    Article  CAS  Google Scholar 

  43. Aaltomaa S, Lipponen P, Eskelinen M, Ala-Opas M, Kosma VM . Prognostic value and expression of p21(waf1/cip1) protein in prostate cancer. Prostate 1999; 39: 8–15.

    Article  CAS  Google Scholar 

  44. Bae DS, Cho SB, Kim YJ, Whang JD, Song SY, Park CS et al. Aberrant expression of cyclin D1 is associated with poor prognosis in early stage cervical cancer of the uterus. Gynecol Oncol 2001; 81: 341–347.

    Article  CAS  Google Scholar 

  45. Baretton GB, Klenk U, Diebold J, Schmeller N, Lohrs U . Proliferation- and apoptosis-associated factors in advanced prostatic carcinomas before and after androgen deprivation therapy: prognostic significance of p21/WAF1/CIP1 expression. Br J Cancer 1999; 80: 546–555.

    Article  CAS  Google Scholar 

  46. Ceccarelli C, Santini D, Chieco P, Lanciotti C, Taffurelli M, Paladini G et al. Quantitative p21(waf-1)/p53 immunohistochemical analysis defines groups of primary invasive breast carcinomas with different prognostic indicators. Int J Cancer 2001; 95: 128–134.

    Article  CAS  Google Scholar 

  47. Cheung TH, Lo KW, Yu MM, Yim SF, Poon CS, Chung TK et al. Aberrant expression of p21(WAF1/CIP1) and p27(KIP1) in cervical carcinoma. Cancer Lett 2001; 172: 93–98.

    Article  CAS  Google Scholar 

  48. Ferrandina G, Stoler A, Fagotti A, Fanfani F, Sacco R, De Pasqua A et al. p21WAF1/CIP1 protein expression in primary ovarian cancer. Int J Oncol 2000; 17: 1231–1235.

    CAS  PubMed  Google Scholar 

  49. Sarbia M, Gabbert HE . Modern pathology: prognostic parameters in squamous cell carcinoma of the esophagus. Recent Results Cancer Res 2000; 155: 15–27.

    Article  CAS  Google Scholar 

  50. Winters ZE, Leek RD, Bradburn MJ, Norbury CJ, Harris AL . Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/ neu in breast cancer and is an independent predictor of prognosis. Breast Cancer Res 2003; 5: R242–R249.

    Article  CAS  Google Scholar 

  51. James MK, Ray A, Leznova D, Blain SW . Differential modification of p27Kip1 controls its cyclin D-cdk4 inhibitory activity. Mol Cell Biol 2008; 28: 498–510.

    Article  CAS  Google Scholar 

  52. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L et al. The tripartite motif family identifies cell compartments. EMBO J 2001; 20: 2140–2151.

    Article  CAS  Google Scholar 

  53. Xu XL, Fang Y, Lee TC, Forrest D, Gregory-Evans C, Almeida D et al. Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell 2009; 137: 1018–1031.

    Article  CAS  Google Scholar 

  54. Yeh N, Miller JP, Gaur T, Capellini TD, Nikolich-Zugich J, de la Hoz C et al. Cooperation between p27 and p107 during endochondral ossification suggests a genetic pathway controlled by p27 and p130. Mol Cell Biol 2007; 27: 5161–5171.

    Article  CAS  Google Scholar 

  55. Taylor BS, Barretina J, Socci ND, Decarolis P, Ladanyi M, Meyerson M et al. Functional copy-number alterations in cancer. PloS one 2008; 3: e3179.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Marta Kovatcheva and other members of the Koff lab, Pengbo Zhou (Cornell University Medical School), John Petrini (MSKCC) and Hakim Djaballah (MSKCC) for comments on this manuscript, and Max Chan Liu (The Browning School) for his assistance with Id1 staining and image acquisition. This work was supported by the Memorial Sloan-Kettering Cancer Center Core Grant (P30CA08748) and grants to Andrew Koff (CA89563). Funding was also provided by the Brain Tumor Center (YL, DC) and the Golfers Against Cancer Foundation (AK).

Author contributions: YL carried out the experiments identifying TRIM3 and measuring the effect of manipulating TRIM3 on p21 in cells. AMP, TO, NPG, CB and ECH analyzed TRIM3 expression in human tumors and human tumor extract. RR, NY, DC, EH, HEB and PT provided experimental assistance or reagents throughout the course of this work. AK directed the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Koff.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Raheja, R., Yeh, N. et al. TRIM3, a tumor suppressor linked to regulation of p21Waf1/Cip1. Oncogene 33, 308–315 (2014). https://doi.org/10.1038/onc.2012.596

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.596

Keywords

This article is cited by

Search

Quick links