Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The role of insulin-like growth factor binding protein-3 in the breast cancer cell response to DNA-damaging agents

Abstract

Following exposure to radiation and chemotherapeutic agents, the epidermal growth factor receptor (EGFR) can modulate the repair of DNA double-strand breaks (DSB) by forming protein complexes that include the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). This is one of the key mechanism by which tumors become resistant to DNA-damaging therapies. Our previous studies have shown that insulin-like growth factor binding protein-3 (IGFBP-3) is a substrate for DNA-PKcs, and can transactivate EGFR. We therefore questioned whether IGFBP-3 might interact with the EGFR−DNA-PK complex that regulates the DNA damage response. The aim of this study was to delineate the role of IGFBP-3 in the response of breast cancer cells to DSB-inducing chemotherapeutic agents. In the estrogen receptor-negative breast cancer cell lines MDA-MB-468 and Hs578T, which express IGFBP-3 highly, nuclear localization of EGFR and IGFBP-3 was enhanced by treatment with cytotoxic drugs etoposide or doxorubicin and reduced by the EGFR kinase inhibitor gefitinib. Enhanced association among IGFBP-3, EGFR and DNA-PKcs, following the exposure to DNA-damaging drugs was supported by both co-immunoprecipitation analysis and direct visualization by proximity ligation assay. The activation of DNA-PKcs at Ser2056, DNA repair as measured by a nonhomologous end-joining assay, and the increase in EGFR and DNA-PKcs interaction induced by DNA-damaging agents, were all decreased by IGFBP-3 silencing, suggesting that IGFBP-3 has an obligatory role in the DNA repair response to DNA-damaging therapy. In conclusion, IGFBP-3 co-translocation to the nucleus of breast cancer cells and its formation of a complex with DNA-PKcs and EGFR in response to DNA damage shows its potential involvement in the regulation of DNA repair. This suggests the possibility of a therapeutic approach for sensitizing breast cancer to chemo- or radiotherapy by targeting the DNA repair function of IGFBP-3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Nadia Harbeck, Frédérique Penault-Llorca, … Fatima Cardoso

References

  1. McPherson K, Steel CM, Dixon JM . Breast cancer—epidemiology, risk factors, and genetics. BMJ 2000; 321: 624–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Coleman MP, Forman D, Bryant H, Butler J, Rachet B, Maringe C et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (The International Cancer Benchmarking Partnership): An analysis of population-based cancer registry data. Lancet 2011; 377: 127–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. DeSantis C, Siegel R, Bandi P, Jemal A . Breast cancer statistics, 2011. CA Cancer J Clin 2011; 61: 409–418.

    Article  PubMed  Google Scholar 

  4. Chen S, Inamdar KV, Pfeiffer P, Feldmann E, Hannah MF, Yu Y et al. Accurate in vitro end joining of a DNA double strand break with partially cohesive 3′-overhangs and 3′-phosphoglycolate termini. Effect of Ku on repair fidelity. J Biol Chem 2001; 276: 24323–24330.

    Article  CAS  PubMed  Google Scholar 

  5. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 2005; 280: 31182–31189.

    Article  CAS  PubMed  Google Scholar 

  6. van den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MCM, Kros JM, Carpentier AF et al. Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 2009; 27: 1268–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reardon D, Desjardins A, Vredenburgh J, Gururangan S, Friedman A, Herndon J et al. Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma. J Neuro-Oncol 2010; 96: 219–230.

    Article  CAS  Google Scholar 

  8. Schedlich LJ, Nilsen T, John AP, Jans DA, Baxter RC . Phosphorylation of insulin-like growth factor binding protein-3 by deoxyribonucleic acid-dependent protein kinase reduces ligand binding and enhances nuclear accumulation. Endocrinology 2003; 144: 1984–1993.

    Article  CAS  PubMed  Google Scholar 

  9. Martin JL, Weenink SM, Baxter RC . Insulin-like growth factor-binding protein-3 potentiates epidermal growth factor action in MCF-10A mammary epithelial cells. J Biol Chem 2003; 278: 2969–2976.

    Article  CAS  PubMed  Google Scholar 

  10. Baxter RC . Circulating binding proteins for the insulinlike growth factors. Trends Endocrinol Metab 1993; 4: 91–96.

    Article  CAS  PubMed  Google Scholar 

  11. Firth SM, Baxter RC . Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 2002; 23: 824–854.

    Article  CAS  PubMed  Google Scholar 

  12. Xue A, Scarlett CJ, Jackson CJ, Allen BJ, Smith RC . Prognostic significance of growth factors and the urokinase-type plasminogen activator system in pancreatic ductal adenocarcinoma. Pancreas 2008; 36: 160–167.

    Article  CAS  PubMed  Google Scholar 

  13. Xi Y, Nakajima G, Hamil T, Fodstad O, Riker A, Ju J . Association of insulin-like growth factor binding protein-3 expression with melanoma progression. Mol Cancer Ther 2006; 5: 3078–3084.

    Article  CAS  PubMed  Google Scholar 

  14. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002; 1: 203–209.

    Article  CAS  PubMed  Google Scholar 

  15. Chuang ST, Patton KT, Schafernak KT, Papavero V, Lin F, Baxter RC et al. Over expression of insulin-like growth factor binding protein 3 in clear cell renal cell carcinoma. J Urol 2008; 179: 445–449.

    Article  CAS  PubMed  Google Scholar 

  16. Rocha RL, Hilsenbeck SG, Jackson JG, Lee AV, Figueroa JA, Yee D . Correlation of insulin-like growth factor-binding protein-3 messenger RNA with protein expression in primary breast cancer tissues: Detection of higher levels in tumors with poor prognostic features. J Nat Cancer Inst 1996; 88: 601–606.

    Article  CAS  PubMed  Google Scholar 

  17. Yu H, Levesque MA, Khosravi MJ, Papanastasiou DA, Clark GM, Diamandis EP . Associations between insulin-like growth factors and their binding proteins and other prognostic indicators in breast cancer. Brit J Cancer 1996; 74: 1242–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sheen-Chen SM, Zhang H, Huang CC, Tang RP . Insulin-like growth factor-binding protein-3 in breast cancer: Analysis with tissue microarray. Anticancer Res 2009; 29: 1131–1135.

    PubMed  Google Scholar 

  19. Grkovic S, O’Reilly VC, Han S, Hong M, Baxter RC, Firth SM . IGFBP-3 binds GRP78, stimulates autophagy and promotes the survival of breast cancer cells exposed to adverse microenvironments. Oncogene 2012 doi:10.1038/onc.2012.264.

    Article  PubMed  Google Scholar 

  20. Martin JL, Lin MZ, McGowan EM, Baxter RC . Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity. J Biol Chem 2009; 284: 25542–25552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Butt AJ, Martin JL, Dickson KA, McDougall F, Firth SM, Baxter RC . Insulin-like growth factor binding protein-3 expression is associated with growth stimulation of T47D human breast cancer cells: the role of altered epidermal growth factor signaling. J Clin Endocrinol Metab 2004; 89: 1950–1956.

    Article  CAS  PubMed  Google Scholar 

  22. Cobb LJ, Liu B, Lee K-W, Cohen P . Phosphorylation by DNA-dependent protein kinase is critical for apoptosis induction by insulin-like growth factor binding protein-3. Cancer Res 2006; 66: 10878–10884.

    Article  CAS  PubMed  Google Scholar 

  23. Chen BPC, Chan DW, Kobayashi J, Burma S, Asaithamby A, Morotomi-Yano K et al. Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks. J Biol Chem 2005; 280: 14709–14715.

    Article  CAS  PubMed  Google Scholar 

  24. Santer FR, Bacher N, Moser B, Morandell D, Ressler S, Firth SM et al. Nuclear insulin-like growth factor binding protein-3 induces apoptosis and is targeted to ubiquitin/proteasome-dependent proteolysis. Cancer Res 2006; 66: 3024–3033.

    Article  CAS  PubMed  Google Scholar 

  25. Andrin C, McDonald D, Attwood KM, Rodrigue A, Ghosh S, Mirzayans R et al. A requirement for polymerized actin in DNA double-strand break repair. Nucleus 2012; 3: 384–395.

    Article  PubMed  Google Scholar 

  26. Butt AJ, Firth SM, King MA, Baxter RC . Insulin-like growth factor-binding protein-3 modulates expression of Bax and Bcl-2 and potentiates p53-independent radiation-induced apoptosis in human breast cancer cells. J Biol Chem 2000; 275: 39174–39181.

    Article  CAS  PubMed  Google Scholar 

  27. Williams AC, Collard TJ, Perks CM, Newcomb P, Moorghen M, Holly JM et al. Increased p53-dependent apoptosis by the insulin-like growth factor binding protein IGFBP-3 in human colonic adenoma-derived cells. Cancer Res 2000; 60: 22–27.

    CAS  PubMed  Google Scholar 

  28. Kinzler KW, Vogelstein B . Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997; 386: 763.

    Article  Google Scholar 

  29. Mineo C, Gill GN, Anderson RGW . Regulated migration of epidermal growth factor receptor from caveolae. J Biol Chem 1999; 274: 30636–30643.

    Article  CAS  PubMed  Google Scholar 

  30. Wang X-Q, Paller AS . Lipid rafts: membrane triage centers. J Invest Dermatol 2006; 126: 951–953.

    Article  CAS  PubMed  Google Scholar 

  31. Hanzal-Bayer MF, Hancock JF . Lipid rafts and membrane traffic. FEBS Lett 2007; 581: 2098–2104.

    Article  CAS  PubMed  Google Scholar 

  32. Lee KW, Liu B, Ma L, Li H, Bang P, Koeffler HP et al. Cellular internalization of insulin-like growth factor binding protein-3: distinct endocytic pathways facilitate re-uptake and nuclear localization. J Biol Chem 2004; 279: 469–476.

    Article  CAS  PubMed  Google Scholar 

  33. Kenworthy AK, Petranova N, Edidin M . High-resolution FRET microscopy of cholera toxin b-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell 2000; 11: 1645–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abulrob A, Giuseppin S, Andrade MF, McDermid A, Moreno M, Stanimirovic D . Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene 2004; 23: 6967–6979.

    Article  CAS  PubMed  Google Scholar 

  35. Ferguson DO, Alt FW . DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 2001; 20: 5572–5579.

    Article  CAS  PubMed  Google Scholar 

  36. Smith GCM, Jackson SP . The DNA-dependent protein kinase. Genes Devel 1999; 13: 916–934.

    Article  CAS  PubMed  Google Scholar 

  37. van Gent DC, Hoeijmakers JHJ, Kanaar R . Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2001; 2: 196–206.

    Article  CAS  PubMed  Google Scholar 

  38. Carpenter G, Liao H-J . Trafficking of receptor tyrosine kinases to the nucleus. Exptl Cell Research 2009; 315: 1556–1566.

    Article  CAS  Google Scholar 

  39. Dittmann K, Mayer C, Rodemann H . Nuclear EGFR as novel therapeutic target. Strahlenther Onkol 2010; 186: 1–6.

    Article  PubMed  Google Scholar 

  40. Muller C, Christodoulopoulos G, Salles B, Panasci L . DNA-dependent protein kinase activity correlates with clinical and in vitro sensitivity of chronic lymphocytic leukemia lymphocytes to nitrogen mustards. Blood 1998; 92: 2213–2219.

    CAS  PubMed  Google Scholar 

  41. Jeggo PA . Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat Res 1998; 150: S80–S91.

    Article  CAS  PubMed  Google Scholar 

  42. Hsu SC, Miller SA, Wang Y, Hung MC . Nuclear EGFR is required for cisplatin resistance and DNA repair. Am J Transl Res 2009; 1: 249–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Friedmann BJ, Caplin M, Savic B, Shah T, Lord CJ, Ashworth A et al. Interaction of the epidermal growth factor receptor and the DNA-dependent protein kinase pathway following gefitinib treatment. Mol Cancer Ther 2006; 5: 209–218.

    Article  CAS  PubMed  Google Scholar 

  44. Ciardiello F, Troiani T, Caputo F, De Laurentiis M, Tortora G, Palmieri G et al. Phase II study of gefitinib in combination with docetaxel as first-line therapy in metastatic breast cancer. Br J Cancer 2006; 94: 1604–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arnes JB, Begin LR, Stefansson I, Brunet JS, Nielsen TO, Foulkes WD et al. Expression of epidermal growth factor receptor in relation to BRCA1 status, basal-like markers and prognosis in breast cancer. J Clin Pathol 2009; 62: 139–146.

    Article  CAS  PubMed  Google Scholar 

  46. Putti TC, El-Rehim DMA, Rakha EA, Paish CE, Lee AHS, Pinder SE et al. Estrogen receptor-negative breast carcinomas: a review of morphology and immunophenotypical analysis. Mod Pathol 2004; 18: 26–35.

    Article  Google Scholar 

  47. Clemmons DR, Camacho-Hübner C, Coronado E, Osborne CK . Insulin-like growth factor binding protein secretion by breast carcinoma cell lines: correlation with estrogen receptor status. Endocrinology 1990; 127: 2679–2686.

    Article  CAS  PubMed  Google Scholar 

  48. Martin JL, Baxter RC . Expression of insulin-like growth factor binding protein-2 by MCF-7 breast cancer cells is regulated through the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway. Endocrinology 2007; 148: 2532–2541.

    Article  CAS  PubMed  Google Scholar 

  49. Rinaldi S, Peeters PHM, Berrino F, Dossus L, Biessy C, Olsen A et al. IGF-I, IGFBP-3 and breast cancer risk in women: the european prospective investigation into cancer and nutrition (EPIC). Endocr Relat Cancer 2006; 13: 593–605.

    Article  CAS  PubMed  Google Scholar 

  50. Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M . Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 2004; 363: 1346–1353.

    Article  CAS  PubMed  Google Scholar 

  51. Probst-Hensch NM, Steiner JHB, Schraml P, Varga Z, Zürrer-Härdi U, Storz M et al. IGFBP2 and IGFBP3 protein expressions in human breast cancer: association with hormonal factors and obesity. Clin Cancer Res 2010; 16: 1025–1032.

    Article  CAS  PubMed  Google Scholar 

  52. O’Han MK, Baxter RC, Schedlich LJ . Effects of endogenous insulin-like growth factor binding protein-3 on cell cycle regulation in breast cancer cells. Growth Factors 2009; 27: 394–408.

    Article  PubMed  Google Scholar 

  53. Hasty P . Is NHEJ a tumor suppressor or an aging suppressor? Cell Cycle 2008; 7: 1139–1145.

    Article  CAS  PubMed  Google Scholar 

  54. Dominguez-Brauer C, Brauer PM, Chen YJ, Pimkina J, Raychaudhuri P . Tumor suppression by ARF: gatekeeper and caretaker. Cell Cycle 2010; 9: 86–89.

    Article  CAS  PubMed  Google Scholar 

  55. Li ML, Greenberg RA . Links between genome integrity and BRCA1 tumor suppression. Trends Biochem Sci 2012; 37: 418–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yarden RI, Metsuyanim S, Pickholtz I, Shabbeer S, Tellio H, Papa MZ . BRCA1-dependent Chk1 phosphorylation triggers partial chromatin disassociation of phosphorylated Chk1 and facilitates S-phase cell cycle arrest. Int J Biochem Cell Biol 2012; 44: 1761–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McIntosh J, Dennison G, Holly JMP, Jarrett C, Frankow A, Foulstone EJ et al. IGFBP-3 can either inhibit or enhance EGF-mediated growth of breast epithelial cells dependent upon the presence of fibronectin. J Biol Chem 2010; 285: 38788–38800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yoon JH, Ahn SG, Lee BH, Jung SH, Oh SH . Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol 2012; 83: 747–757.

    Article  CAS  PubMed  Google Scholar 

  59. Schedlich LJ, Young TF, Firth SM, Baxter RC . Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 share a common nuclear transport pathway in T47D human breast carcinoma cells. J Biol Chem 1998; 273: 18347–18352.

    Article  CAS  PubMed  Google Scholar 

  60. Schedlich LJ, Le Page SL, Firth SM, Briggs LJ, Jans DA, Baxter RC . Nuclear import of insulin-like growth factor-binding protein-3 and -5 is mediated by the importin beta subunit. J Biol Chem 2000; 275: 23462–23470.

    Article  CAS  PubMed  Google Scholar 

  61. Liccardi G, Hartley JA, Hochhauser D . EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res 2011; 71: 1103–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dittmann K, Mayer C, Kehlbach R, Rodemann HP . Radiation-induced caveolin-1associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK. Mol Cancer 2008; 7: 69.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dennison G, Holly J, McIntosh J, Winters Z, Perks C . Insulin-like growth factor binding protein 3 modulates epidermal growth factor (EGF)-induced growth of breast epithelial cells by altering EGF receptor internalization. Breast Cancer Res 2008; 10: P40.

    Article  PubMed Central  Google Scholar 

  64. Micutkova L, Hermann M, Offterdinger M, Hess MW, Matscheski A, Pircher H et al. Analysis of the cellular uptake and nuclear delivery of insulin-like growth factor binding protein-3 in human osteosarcoma cells. Int J Cancer 2012; 130: 1544–1557.

    Article  CAS  PubMed  Google Scholar 

  65. Paharkova-Vatchkova V, Lee K-W . Nuclear export and mitochondrial and endoplasmic reticulum localization of IGF-binding protein 3 regulate its apoptotic properties. Endocr Relat Cancer 2010; 17: 293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Irwin ME, Mueller KL, Bohin N, Ge Y, Boerner JL . Lipid raft localization of EGFR alters the response of cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J Cell Physiol 2011; 226: 2316–2328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Feldmann E, Schmiemann V, Goedecke W, Reichenberger S, Pfeiffer P . DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res 2000; 28: 2585–2596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Andrin C, Hendzel MJ . F-actin-dependent insolubility of chromatin-modifying components. J Biol Chem 2004; 279: 25017–25023.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant Number DP0984232 to RCB from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R C Baxter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, M., Marzec, K., Martin, J. et al. The role of insulin-like growth factor binding protein-3 in the breast cancer cell response to DNA-damaging agents. Oncogene 33, 85–96 (2014). https://doi.org/10.1038/onc.2012.538

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.538

Keywords

This article is cited by

Search

Quick links