Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic K-ras expression is associated with derangement of the cAMP/PKA pathway and forskolin-reversible alterations of mitochondrial dynamics and respiration

Abstract

The Warburg effect in cancer cells has been proposed to involve several mechanisms, including adaptation to hypoxia, oncogenes activation or loss of oncosuppressors and impaired mitochondrial function. In previous papers, it has been shown that K-ras transformed mouse cells are much more sensitive as compared with normal cells to glucose withdrawal (undergoing apoptosis) and present a high glycolytic rate and a strong reduction of mitochondrial complex I. Recent observations suggest that transformed cells have a derangement in the cyclic adenosine monophosphate/cAMP-dependent protein kinase (cAMP/PKA) pathway, which is known to regulate several mitochondrial functions. Herein, the derangement of the cAMP/PKA pathway and its impact on transformation-linked changes of mitochondrial functions is investigated. Exogenous stimulation of PKA activity, achieved by forskolin treatment, protected K-ras-transformed cells from apoptosis induced by glucose deprivation, enhanced complex I activity, intracellular adenosine triphosphate (ATP) levels, mitochondrial fusion and decreased intracellular reactive oxygen species (ROS) levels. Several of these effects were almost completely prevented by inhibiting the PKA activity. Short-time treatment with compounds favoring mitochondrial fusion strongly decreased the cellular ROS levels especially in transformed cells. These findings support the notion that glucose shortage-induced apoptosis, specific of K-ras-transformed cells, is associated to a derangement of PKA signaling that leads to mitochondrial complex I decrease, reduction of ATP formation, prevalence of mitochondrial fission over fusion, and thereby opening new approaches for development of anticancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Mathupala SP, Rempel A, Pedersen PL . Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Biomembr 1997; 29: 339–343.

    Article  CAS  PubMed  Google Scholar 

  2. Mazurek S, Eigenbrodt E . The tumor metabolome. Anticancer Res 2003; 23: 1149–1154.

    CAS  PubMed  Google Scholar 

  3. Zu XL, Guppy M . Cancer metabolism: facts, fantasy, and fiction. Biochem Biophy Res Commun 2004; 313: 459–465.

    Article  CAS  Google Scholar 

  4. Ramanathan A, Wang C, Schreiber SL . Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA 2005; 102: 5992–5997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E . Energy metabolism in tumor cells. FEBS J 2007; 274: 1393–1418.

    Article  CAS  PubMed  Google Scholar 

  6. McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND et al. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 2008; 283: 22700–22708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    Article  CAS  PubMed  Google Scholar 

  8. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chiaradonna F, Moresco RM, Airoldi C, Gaglio D, Palorini R, Nicotra F et al. From cancer metabolism to new biomarkers and drug targets. Biotechnol Adv 2011; 30: 30–51.

    Article  PubMed  Google Scholar 

  10. Tortora G, Ciardiello F . Protein kinase A as target for novel integrated strategies of cancer therapy. Ann NY Acad Sci 2002; 968: 139–147.

    Article  CAS  PubMed  Google Scholar 

  11. Shaw RJ, Cantley LC . Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006; 441: 424–430.

    Article  CAS  PubMed  Google Scholar 

  12. Ma W, Sung HJ, Park JY, Matoba S, Hwang PM . A pivotal role for p53: balancing aerobic respiration and glycolysis. J Bioenerg Biomembr 2007; 39: 243–246.

    Article  CAS  PubMed  Google Scholar 

  13. Chiaradonna F, Gaglio D, Vanoni M, Alberghina L . Expression of transforming K-Ras oncogene affects mitochondrial function and morphology in mouse fibroblasts. Biochimica et Biophysica Acta 2006; 1757: 1338–1356.

    Article  CAS  PubMed  Google Scholar 

  14. Lu J, Sharma LK, Bai Y . Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res 2009; 19: 802–815.

    Article  CAS  PubMed  Google Scholar 

  15. Lee HC, Wei YH . Mitochondrial DNA instability and metabolic shift in human cancers. Int J Mol Sci 2009; 10: 674–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim JW, Tchernyshyov I, Semenza GL, Dang CV . HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabol 2006; 3: 177–185.

    Article  Google Scholar 

  17. Buchet K, Godinot C . Functional F1-ATPase essential in maintaining growth and membrane potential of human mitochondrial DNA-depleted rho degrees cells. J Biol Chem 1998; 273: 22983–22989.

    Article  CAS  PubMed  Google Scholar 

  18. Simonnet H, Demont J, Pfeiffer K, Guenaneche L, Bouvier R, Brandt U et al. Mitochondrial complex I is deficient in renal oncocytomas. Carcinogenesis 2003; 24: 1461–1466.

    Article  CAS  PubMed  Google Scholar 

  19. Alchanati I, Nallar SC, Sun P, Gao L, Hu J, Stein A et al. A proteomic analysis reveals the loss of expression of the cell death regulatory gene GRIM-19 in human renal cell carcinomas. Oncogene 2006; 25: 7138–7147.

    Article  CAS  PubMed  Google Scholar 

  20. Plecita-Hlavata L, Lessard M, Santorova J, Bewersdorf J, Jezek P . Mitochondrial oxidative phosphorylation and energetic status are reflected by morphology of mitochondrial network in INS-1E and HEP-G2 cells viewed by 4Pi microscopy. Biochimica et Biophysica Acta 2008; 1777: 834–846.

    Article  CAS  PubMed  Google Scholar 

  21. Bos JL . Ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  22. Rodenhuis S . Ras and human tumors. Semin Cancer Biol 1992; 3: 241–247.

    CAS  PubMed  Google Scholar 

  23. Franks DJ, Whitfield JF, Durkin JP . Viral p21 Ki-RAS protein: a potent intracellular mitogen that stimulates adenylate cyclase activity in early G1 phase of cultured rat cells. J Cell Biochem 1987; 33: 87–94.

    Article  CAS  PubMed  Google Scholar 

  24. Konishi-Imamura L, Tohda M, Noda M, Nakano H, Nomura Y . GTP-binding proteins and adenylate cyclase activity in v-Ki-ras transformed NIH/3T3 fibroblast cells. Biochem Biophy Res Commun 1988; 153: 1214–1222.

    Article  CAS  Google Scholar 

  25. Konishi-Imamura L, Noda M, Nomura Y . Alteration by v-Ki-ras in NaF, cholera toxin and forskolin-induced adenylate cyclase activation in NIH/3T3 fibroblast cells. Biochem Biophy Res Commun 1987; 146: 47–52.

    Article  CAS  Google Scholar 

  26. Gallo A, Feliciello A, Varrone A, Cerillo R, Gottesman ME, Avvedimento VE . Ki-ras oncogene interferes with the expression of cyclic AMP-dependent promoters. Cell Growth Differ 1995; 6: 91–95.

    CAS  PubMed  Google Scholar 

  27. Feliciello A, Giuliano P, Porcellini A, Garbi C, Obici S, Mele E et al. The v-Ki-Ras oncogene alters cAMP nuclear signaling by regulating the location and the expression of cAMP-dependent protein kinase IIbeta. J Biol Chem 1996; 271: 25350–25359.

    Article  CAS  PubMed  Google Scholar 

  28. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 2000; 24: 227–235.

    Article  CAS  PubMed  Google Scholar 

  29. Chiaradonna F, Balestrieri C, Gaglio D, Vanoni M . RAS and PKA pathways in cancer: new insight from transcriptional analysis. Front Biosci 2008; 13: 5257–5278.

    Article  CAS  PubMed  Google Scholar 

  30. Baratta MG, Porreca I, Di Lauro R . Oncogenic ras blocks the cAMP pathway and dedifferentiates thyroid cells via an impairment of pax8 transcriptional activity. Mol Endocrinol 2009; 23: 838–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Balestrieri C, Alberghina L, Vanoni M, Chiaradonna F . Data recovery and integration from public databases uncovers transformation-specific transcriptional downregulation of cAMP-PKA pathway-encoding genes. BMC Bioinform 2009; 10 (Suppl 12): S1.

    Article  Google Scholar 

  32. Hiraki Y, McMorrow IM, Birnbaum MJ . The regulation of glucose transporter gene expression by cyclic adenosine monophosphate in NIH3T3 fibroblasts. Mol Endocrinol 1989; 3: 1470–1476.

    Article  CAS  PubMed  Google Scholar 

  33. Hosaka Y, Tawata M, Kurihara A, Ohtaka M, Endo T, Onaya T . The regulation of two distinct glucose transporter (GLUT1 and GLUT4) gene expressions in cultured rat thyroid cells by thyrotropin. Endocrinology 1992; 131: 159–165.

    Article  CAS  PubMed  Google Scholar 

  34. Osawa H, Printz RL, Whitesell RR, Granner DK . Regulation of hexokinase II gene transcription and glucose phosphorylation by catecholamines, cyclic AMP, and insulin. Diabetes 1995; 44: 1426–1432.

    Article  CAS  PubMed  Google Scholar 

  35. Depre C, Ponchaut S, Deprez J, Maisin L, Hue L . Cyclic AMP suppresses the inhibition of glycolysis by alternative oxidizable substrates in the heart. J Clin Invest 1998; 101: 390–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Papa S . Does cAMP play a part in the regulation of the mitochondrial electron transport chain in mammalian cells? IUBMB Life 2006; 58: 173–175.

    Article  CAS  PubMed  Google Scholar 

  37. Papa S, De Rasmo D, Scacco S, Signorile A, Technikova-Dobrova Z, Palmisano G et al. Mammalian complex I: a regulable and vulnerable pacemaker in mitochondrial respiratory function. Biochimica et Biophysica Acta 2008; 1777: 719–728.

    Article  CAS  PubMed  Google Scholar 

  38. De Rasmo D, Gattoni G, Papa F, Santeramo A, Pacelli C, Cocco T et al. The beta-adrenoceptor agonist isoproterenol promotes the activity of respiratory chain complex I and lowers cellular reactive oxygen species in fibroblasts and heart myoblasts. Eur J Pharmacol 2011; 652: 15–22.

    Article  CAS  PubMed  Google Scholar 

  39. Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G . Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metabol 2009; 9: 265–276.

    Article  CAS  Google Scholar 

  40. Cribbs JT, Strack S . Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 2007; 8: 939–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang CR, Blackstone C . Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 2007; 282: 21583–21587.

    Article  CAS  PubMed  Google Scholar 

  42. Bellis A, Castaldo D, Trimarco V, Monti MG, Chivasso P, Sadoshima J et al. Cross-talk between PKA and Akt protects endothelial cells from apoptosis in the late ischemic preconditioning. Arterioscler Thromb Vasc Biol 2009; 29: 1207–1212.

    Article  CAS  PubMed  Google Scholar 

  43. Harada H, Becknell B, Wilm M, Mann M, Huang LJ, Taylor SS et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell 1999; 3: 413–422.

    Article  CAS  PubMed  Google Scholar 

  44. Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA et al. Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J 2003; 17: 82–84.

    Article  CAS  PubMed  Google Scholar 

  45. Chen Q, Lin RY, Rubin CS . Organelle-specific targeting of protein kinase AII (PKAII). Molecular and in situ characterization of murine A kinase anchor proteins that recruit regulatory subunits of PKAII to the cytoplasmic surface of mitochondria. J Biol Chem 1997; 272: 15247–15257.

    Article  CAS  PubMed  Google Scholar 

  46. Schwoch G, Trinczek B, Bode C . Localization of catalytic and regulatory subunits of cyclic AMP-dependent protein kinases in mitochondria from various rat tissues. Biochem J 1990; 270: 181–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Signorile A, Sardanelli AM, Nuzzi R, Papa S . Serine (threonine) phosphatase(s) acting on cAMP-dependent phosphoproteins in mammalian mitochondria. FEBS Lett 2002; 512: 91–94.

    Article  CAS  PubMed  Google Scholar 

  48. Sardanelli AM, Signorile A, Nuzzi R, Rasmo DD, Technikova-Dobrova Z, Drahota Z et al. Occurrence of A-kinase anchor protein and associated cAMP-dependent protein kinase in the inner compartment of mammalian mitochondria. FEBS Lett 2006; 580: 5690–5696.

    Article  CAS  PubMed  Google Scholar 

  49. De Rasmo D, Signorile A, Roca E, Papa S . cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis. FEBS J 2009; 276: 4325–4333.

    Article  CAS  PubMed  Google Scholar 

  50. Piccoli C, Scacco S, Bellomo F, Signorile A, Iuso A, Boffoli D et al. cAMP controls oxygen metabolism in mammalian cells. FEBS Lett 2006; 580: 4539–4543.

    Article  CAS  PubMed  Google Scholar 

  51. Bossu P, Vanoni M, Wanke V, Cesaroni MP, Tropea F, Melillo G et al. A dominant negative RAS-specific guanine nucleotide exchange factor reverses neoplastic phenotype in K-ras transformed mouse fibroblasts. Oncogene 2000; 19: 2147–2154.

    Article  CAS  PubMed  Google Scholar 

  52. Chiaradonna F, Sacco E, Manzoni R, Giorgio M, Vanoni M, Alberghina L . Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 2006; 25: 5391–5404.

    Article  CAS  PubMed  Google Scholar 

  53. Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F . Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS One 2009; 4: e4715.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Sala Danna L, Balestrieri C et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 2011; 7: 523.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Baracca A, Chiaradonna F, Sgarbi G, Solaini G, Alberghina L, Lenaz G . Mitochondrial complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochimica et Biophysica Acta 2010; 1797: 314–323.

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto F, Perucho M . Activation of a human c-K-ras oncogene. Nucleic Acids Res 1984; 12: 8873–8885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 2009; 325: 1555–1559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vizan P, Boros LG, Figueras A, Capella G, Mangues R, Bassilian S et al. K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts. Cancer Res 2005; 65: 5512–5515.

    Article  CAS  PubMed  Google Scholar 

  59. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 2010; 107: 8788–8793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gerits N, Kostenko S, Shiryaev A, Johannessen M, Moens U . Relations between the mitogen-activated protein kinase and the cAMP-dependent protein kinase pathways: comradeship and hostility. Cell Signal 2008; 20: 1592–1607.

    Article  CAS  PubMed  Google Scholar 

  61. Papa S, Zanotti F, Cocco T, Perrucci C, Candita C, Minuto M . Identification of functional domains and critical residues in the adenosinetriphosphatase inhibitor protein of mitochondrial F0F1 ATP synthase. Eur J Biochem 1996; 240: 461–467.

    Article  CAS  PubMed  Google Scholar 

  62. Chijiwa T, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T et al. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem 1990; 265: 5267–5272.

    CAS  PubMed  Google Scholar 

  63. Gomes LC, Di Benedetto G, Scorrano L . During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011; 13: 589–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Borlikova G, Endo S . Inducible cAMP early repressor (ICER) and brain functions. Mol Neurobiol 2009; 40: 73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lenaz G, Baracca A, Barbero G, Bergamini C, Dalmonte ME, Del Sole M et al. Mitochondrial respiratory chain super-complex I-III in physiology and pathology. Biochimica et Biophysica Acta 2010; 1797: 633–640.

    Article  CAS  PubMed  Google Scholar 

  66. Merrill RA, Dagda RK, Dickey AS, Cribbs JT, Green SH, Usachev YM et al. Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1. PLoS Biol 2011; 9: e1000612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grandemange S, Herzig S, Martinou JC . Mitochondrial dynamics and cancer. Semin Cancer Biol 2009; 19: 50–56.

    Article  CAS  PubMed  Google Scholar 

  68. Palmer CS, Osellame LD, Stojanovski D, Ryan MT . The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal 2011; 23: 1534–1545.

    Article  CAS  PubMed  Google Scholar 

  69. Koopman WJ, Visch HJ, Verkaart S, van den Heuvel LW, Smeitink JA, Willems PH . Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. Am J Physiol Cell Physiol 2005; 289: C881–C890.

    Article  CAS  PubMed  Google Scholar 

  70. Capaldi RA, Aggeler R, Gilkerson R, Hanson G, Knowles M, Marcus A et al. A replicating module as the unit of mitochondrial structure and functioning. Biochimica et Biophysica Acta 2002; 1555: 192–195.

    Article  CAS  PubMed  Google Scholar 

  71. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T et al. Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007; 120 (Pt 5): 838–848.

    Article  CAS  PubMed  Google Scholar 

  72. Pulciani S, Santos E, Long LK, Sorrentino V, Barbacid M . ras gene Amplification and malignant transformation. Mol Cell Biol 1985; 5: 2836–2841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by a grant to LA from MIUR (FIRB-ITALBIONET), grants to FC from the Italian Government (FAR) and MIUR (Prin 2008), grant to DDR and CC from MIUR (Progetto FIRB futuro in ricerca, 2008), grants to SP from MIUR (Progetto FIRB Rete Nazionale per lo Studio della Proteomica Umana-Italian Human ProteomeNet, 2009) and Progetto Strategico Ric.002, Cip PS 101, POR 2000/06.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F Chiaradonna or L Alberghina.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palorini, R., De Rasmo, D., Gaviraghi, M. et al. Oncogenic K-ras expression is associated with derangement of the cAMP/PKA pathway and forskolin-reversible alterations of mitochondrial dynamics and respiration. Oncogene 32, 352–362 (2013). https://doi.org/10.1038/onc.2012.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.50

Keywords

This article is cited by

Search

Quick links