Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutant B-RAF regulates a Rac-dependent cadherin switch in melanoma

Abstract

The ability of cells to invade into the dermis is a critical event in the development of cutaneous melanoma and ultimately an indicator of poor prognosis. However, the molecular events surrounding the acquisition of this invasive phenotype remain incompletely understood. Mutations in B-RAF are frequent in melanoma and are known to regulate the invasive phenotype. In this study, we sought to determine the molecular mechanisms controlling melanoma invasion. We found that mutant B-RAF signaling regulates a cadherin switch. In melanoma cells expressing mutant B-RAF we observed high levels of N-cadherin and low levels of E-cadherin. Depletion of mutant B-RAF, by small interfering RNA, caused a decrease in the levels of N-cadherin and an increase in the levels of E-cadherin. Mechanistically, we found that this cadherin switch required the activity of Rac1 and its GEF, Tiam1, both of which show suppressed activity in the presence of mutant B-RAF. Consistent with the work of others, we found that depletion of mutant B-RAF decreased the invasive capacity of the melanoma cells. However, simultaneous depletion of B-RAF and Rac or Tiam1 resulted in invasive capacity similar to that of control cells. Taken together, our results suggest that mutant B-RAF signaling downregulates Tiam1/Rac activity resulting in an increase in N-cadherin levels and a decrease in E-cadherin levels and ultimately enhanced invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Sauter ER, Herlyn M . Molecular biology of human melanoma development and progression. Mol Carcinog 1998; 23: 132–143.

    Article  CAS  PubMed  Google Scholar 

  2. Chin L . The genetics of malignant melanoma: lessons from mouse and man. Nat Rev Cancer 2003; 3: 559–570.

    Article  CAS  PubMed  Google Scholar 

  3. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  4. Pollock PM, Cohen-Solal K, Sood R, Namkoong J, Martino JJ, Koganti A et al. Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet 2003; 34: 108–112.

    Article  CAS  PubMed  Google Scholar 

  5. Dong J, Phelps RG, Qiao R, Yao S, Benard O, Ronai Z et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res 2003; 63: 3883–3885.

    CAS  PubMed  Google Scholar 

  6. Sumimoto H, Miyagishi M, Miyoshi H, Yamagata S, Shimizu A, Taira K et al. Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 2004; 23: 6031–6039.

    Article  CAS  PubMed  Google Scholar 

  7. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 2008; 105: 3041–3046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vleminckx K, Kemler R . Cadherins and tissue formation: integrating adhesion and signaling. Bioessays 1999; 21: 211–220.

    Article  CAS  PubMed  Google Scholar 

  9. Hsu MY, Wheelock MJ, Johnson KR, Herlyn M . Shifts in cadherin profiles between human normal melanocytes and melanomas. J Investig Dermatol Symp Proc 1996; 1: 188–194.

    CAS  PubMed  Google Scholar 

  10. Silye R, Karayiannakis AJ, Syrigos KN, Poole S, van NS, Batchelor W et al. E-cadherin/catenin complex in benign and malignant melanocytic lesions. J Pathol 1998; 186: 350–355.

    Article  CAS  PubMed  Google Scholar 

  11. Tang A, Eller MS, Hara M, Yaar M, Hirohashi S, Gilchrest BA . E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J Cell Sci 1994; 107 (Pt 4): 983–992.

    CAS  PubMed  Google Scholar 

  12. Hsu M, Andl T, Li G, Meinkoth JL, Herlyn M . Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci 2000; 113 (Pt 9): 1535–1542.

    CAS  PubMed  Google Scholar 

  13. Sandig M, Voura EB, Kalnins VI, Siu CH . Role of cadherins in the transendothelial migration of melanoma cells in culture. Cell Motil Cytoskeleton 1997; 38: 351–364.

    Article  CAS  PubMed  Google Scholar 

  14. Li G, Satyamoorthy K, Herlyn M . N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res 2001; 61: 3819–3825.

    CAS  PubMed  Google Scholar 

  15. Braga VM, Machesky LM, Hall A, Hotchin NA . The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 1997; 137: 1421–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takaishi K, Sasaki T, Kotani H, Nishioka H, Takai Y . Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. J Cell Biol 1997; 139: 1047–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hordijk PL, ten Klooster JP, van der Kammen RA, Michiels F, Oomen LC . Collard JG. Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 1997; 278: 1464–1466.

    Article  CAS  PubMed  Google Scholar 

  18. Habets GG, Scholtes EH, Zuydgeest D, van der Kammen RA, Stam JC, Berns A et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 1994; 77: 537–549.

    Article  CAS  PubMed  Google Scholar 

  19. Michiels F, Collard JG . Rho-like GTPases: their role in cell adhesion and invasion. Biochem Soc Symp 1999; 65: 125–146.

    CAS  PubMed  Google Scholar 

  20. Engers R, Springer E, Michiels F, Collard JG, Gabbert HE . Rac affects invasion of human renal cell carcinomas by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 expression. J Biol Chem 2001; 276: 41889–41897.

    Article  CAS  PubMed  Google Scholar 

  21. Calipel A, Lefevre G, Pouponnot C, Mouriaux F, Eychene A, Mascarelli F . Mutation of B-Raf in human choroidal melanoma cells mediates cell proliferation and transformation through the MEK/ERK pathway. J Biol Chem 2003; 278: 42409–42418.

    Article  CAS  PubMed  Google Scholar 

  22. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010; 467: 596–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y . Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 2004; 101: 7618–7623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akbar H, Cancelas J, Williams DA, Zheng J, Zheng Y . Rational design and applications of a Rac GTPase-specific small molecule inhibitor. Methods Enzymol 2006; 406: 554–565.

    Article  CAS  PubMed  Google Scholar 

  25. Albino AP, Nanus DM, Mentle IR, Cordon-Cardo C, McNutt NS, Bressler J et al. Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene 1989; 4: 1363–1374.

    CAS  PubMed  Google Scholar 

  26. Garcia-Mata R, Wennerberg K, Arthur WT, Noren NK, Ellerbroek SM, Burridge K . Analysis of activated GAPs and GEFs in cell lysates. Methods Enzymol 2006; 406: 425–437.

    Article  CAS  PubMed  Google Scholar 

  27. Stam JC, Sander EE, Michiels F, van Leeuwen FN, Kain HE, van der Kammen RA et al. Targeting of Tiam1 to the plasma membrane requires the cooperative function of the N-terminal pleckstrin homology domain and an adjacent protein interaction domain. J Biol Chem 1997; 272: 28447–28454.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang JD, Koerner C, Bechtel S, Bender C, Keklikoglou I, Schmidt C et al. Time-resolved human kinome RNAi screen identifies a network regulating mitotic-events as early regulators of cell proliferation. PLoS One 2011; 6: e22176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li G, Satyamoorthy K, Herlyn M . Dynamics of cell interactions and communications during melanoma development. Crit Rev Oral Biol Med 2002; 13: 62–70.

    Article  CAS  PubMed  Google Scholar 

  30. Hirohashi S . Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998; 153: 333–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Poser I, Dominguez D, de Herreros AG, Varnai A, Buettner R, Bosserhoff AK . Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 2001; 276: 24661–24666.

    Article  CAS  PubMed  Google Scholar 

  32. Massoumi R, Kuphal S, Hellerbrand C, Haas B, Wild P, Spruss T et al. Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J Exp Med 2009; 206: 221–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arozarena I, Sanchez-Laorden B, Packer L, Hidalgo-Carcedo C, Hayward R, Viros A et al. Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 2011; 19: 45–57.

    Article  CAS  PubMed  Google Scholar 

  34. Goodall J, Carreira S, Denat L, Kobi D, Davidson I, Nuciforo P et al. Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res 2008; 68: 7788–7794.

    Article  CAS  PubMed  Google Scholar 

  35. Kuroda S, Fukata M, Fujii K, Nakamura T, Izawa I, Kaibuchi K . Regulation of cell-cell adhesion of MDCK cells by Cdc42 and Rac1 small GTPases. Biochem Biophys Res Commun 1997; 240: 430–435.

    Article  CAS  PubMed  Google Scholar 

  36. Zhong C, Kinch MS, Burridge K . Rho-stimulated contractility contributes to the fibroblastic phenotype of Ras-transformed epithelial cells. Mol Biol Cell 1997; 8: 2329–2344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jou TS, Schneeberger EE, Nelson WJ . Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J Cell Biol 1998; 142: 101–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stam JC, Michiels F, van der Kammen RA, Moolenaar WH, Collard JG . Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J 1998; 17: 4066–4074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smalley KS . A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int J Cancer 2003; 104: 527–532.

    Article  CAS  PubMed  Google Scholar 

  40. Alsina J, Gorsk DH, Germino FJ, Shih W, Lu SE, Zhang ZG et al. Detection of mutations in the mitogen-activated protein kinase pathway in human melanoma. Clin Cancer Res 2003; 9: 6419–6425.

    CAS  PubMed  Google Scholar 

  41. Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 2006; 66: 9483–9491.

    Article  CAS  PubMed  Google Scholar 

  42. Ray RM, Vaidya RJ, Johnson LR . MEK/ERK regulates adherens junctions and migration through Rac1. Cell Motil Cytoskeleton 2007; 64: 143–156.

    Article  CAS  PubMed  Google Scholar 

  43. Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG . Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol 2000; 149: 775–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sander EE, van DS, ten Klooster JP, Reid T, van der Kammen RA, Michiels F et al. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J Cell Biol 1998; 143: 1385–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Uhlenbrock K, Eberth A, Herbrand U, Daryab N, Stege P, Meier F et al. The RacGEF Tiam1 inhibits migration and invasion of metastatic melanoma via a novel adhesive mechanism. J Cell Sci 2004; 117 (Pt 20): 4863–4871.

    Article  CAS  PubMed  Google Scholar 

  46. Klein RM, Spofford LS, Abel EV, Ortiz A, Aplin AE . B-RAF regulation of Rnd3 participates in actin cytoskeletal and focal adhesion organization. Mol Biol Cell 2008; 19: 498–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Klein RM, Aplin AE . Rnd3 regulation of the actin cytoskeleton promotes melanoma migration and invasive outgrowth in three dimensions. Cancer Res 2009; 69: 2224–2233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants GM029860 and HL080166 to KB. E M-B is supported by American Cancer Society PF-09_119-01-CSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Monaghan-Benson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monaghan-Benson, E., Burridge, K. Mutant B-RAF regulates a Rac-dependent cadherin switch in melanoma. Oncogene 32, 4836–4844 (2013). https://doi.org/10.1038/onc.2012.492

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.492

Keywords

This article is cited by

Search

Quick links