Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The serologically defined colon cancer antigen-3 interacts with the protein tyrosine phosphatase PTPN13 and is involved in the regulation of cytokinesis

Abstract

Cytokinesis is the final step of cell division. Increasing evidence suggests failure of cytokinesis might contribute to the development of cancer. Here, we demonstrate that the serologically defined colon cancer antigen-3 (SDCCAG3) forms a complex with PTPN13, a protein tyrosine phosphatase known to be involved in the regulation of cytokinesis, carcinogenesis and tumor aggressiveness. We show that SDCCAG3 is a novel endosomal protein, primarily localized at the early/recycling endosomal compartment. SDCCAG3 undergoes dynamic localization during cell division with strong accumulation at the midbody during cytokinesis. Overexpression as well as downregulation correlates with the generation of multinucleate cells. Furthermore, we show interaction of SDCCAG3 with the Arf GTPase activating protein GIT1 (G protein-coupled receptor kinase interactor-1). Overexpression of an ArfGAP-negative version of GIT1 also results in an increased number of multinucleate cells suggesting regulation of Arf-mediated vesicular trafficking or signaling via SDCCAG3. Finally, we demonstrate that SDCCAG3 expression levels are elevated in colon cancers. In summary, we have established SDCCAG3 as a novel endosomal protein, which is involved in the regulation of cytokinesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Montagnac G, Echard A, Chavrier P . Endocytic traffic in animal cell cytokinesis. Curr Opin Cell Biol 2008; 20: 454–461.

    Article  CAS  Google Scholar 

  2. Echard A . Membrane traffic and polarization of lipid domains during cytokinesis. Biochem Soc Trans 2008; 36 (Pt 3): 395–399.

    Article  CAS  Google Scholar 

  3. Prekeris R, Gould GW . Breaking up is hard to do - membrane traffic in cytokinesis. J Cell Sci 2008; 121 (Pt 10): 1569–1576.

    Article  CAS  Google Scholar 

  4. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D . Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 2005; 437: 1043–1047.

    Article  CAS  Google Scholar 

  5. Weaver BA, Cleveland DW . Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res 2007; 67: 10103–10105.

    Article  CAS  Google Scholar 

  6. Freiss G, Chalbos D . PTPN13/PTPL1: an important regulator of tumor aggressiveness. Anticancer Agents Med Chem 2011; 11: 78–88.

    Article  CAS  Google Scholar 

  7. Scrima M, De Marco C, De Vita F, Fabiani F, Franco R, Pirozzi G et al. The nonreceptor-type tyrosine phosphatase PTPN13 is a tumor suppressor gene in non-small cell lung cancer. Am J Pathol 2012; 180: 1202–1214.

    Article  CAS  Google Scholar 

  8. Herrmann L, Dittmar T, Erdmann KS . The protein tyrosine phosphatase PTP-BL associates with the midbody and is involved in the regulation of cytokinesis. Mol Biol Cell 2003; 14: 230–240.

    Article  CAS  Google Scholar 

  9. Erdmann KS . The protein tyrosine phosphatase PTP-Basophil/Basophil-like. Interacting proteins and molecular functions. Eur J Biochem 2003; 270: 4789–4798.

    Article  CAS  Google Scholar 

  10. Hendriks W, Schepens J, Bachner D, Rijss J, Zeeuwen P, Zechner U et al. Molecular cloning of a mouse epithelial protein-tyrosine phosphatase with similarities to submembranous proteins. J Cell Biochem 1995; 59: 418–430.

    Article  CAS  Google Scholar 

  11. Cuppen E, Wijers M, Schepens J, Fransen J, Wieringa B, Hendriks WA . FERM domain governs apical confinement of PTP-BL in epithelial cells. J Cell Sci 1999; 112 (Pt 19): 3299–3308.

    CAS  PubMed  Google Scholar 

  12. Abaan OD, Levenson A, Khan O, Furth PA, Uren A, Toretsky JA . PTPL1 is a direct transcriptional target of EWS-FLI1 and modulates Ewing’s Sarcoma tumorigenesis. Oncogene 2005; 24: 2715–2722.

    Article  CAS  Google Scholar 

  13. Glondu-Lassis M, Dromard M, Lacroix-Triki M, Nirde P, Puech C, Knani D et al. PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of Src kinase. Cancer Res 2010; 70: 5116–5126.

    Article  CAS  Google Scholar 

  14. Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 2004; 304: 1164–1166.

    Article  CAS  Google Scholar 

  15. Zhu JH, Chen R, Yi W, Cantin GT, Fearns C, Yang Y et al. Protein tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 malignant signaling. Oncogene 2008; 27: 2525–2531.

    Article  CAS  Google Scholar 

  16. Hoover AC, Strand GL, Nowicki PN, Anderson ME, Vermeer PD, Klingelhutz AJ et al. Impaired PTPN13 phosphatase activity in spontaneous or HPV-induced squamous cell carcinomas potentiates oncogene signaling through the MAP kinase pathway. Oncogene 2009; 28: 3960–3970.

    Article  CAS  Google Scholar 

  17. Sato T, Irie S, Kitada S, Reed JC . FAP-1: a protein tyrosine phosphatase that associates with Fas. Science 1995; 268: 411–415.

    Article  CAS  Google Scholar 

  18. Li Y, Kanki H, Hachiya T, Ohyama T, Irie S, Tang G et al. Negative regulation of Fas-mediated apoptosis by FAP-1 in human cancer cells. Int J Cancer 2000; 87: 473–479.

    Article  CAS  Google Scholar 

  19. Ungefroren H, Kruse ML, Trauzold A, Roeschmann S, Roeder C, Arlt A et al. FAP-1 in pancreatic cancer cells: functional and mechanistic studies on its inhibitory role in CD95-mediated apoptosis. J Cell Sci 2001; 114 (Pt 15): 2735–2746.

    CAS  PubMed  Google Scholar 

  20. Ivanov VN, Lopez Bergami P, Maulit G, Sato TA, Sassoon D, Ronai Z . FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Mol Cell Biol 2003; 23: 3623–3635.

    Article  CAS  Google Scholar 

  21. Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD et al. Characterization of human colon cancer antigens recognized by autologous antibodies. Int J Cancer 1998; 76: 652–658.

    Article  CAS  Google Scholar 

  22. Neznanov N, Neznanova L, Angres B, Gudkov AV . Serologically defined colon cancer antigen 3 is necessary for the presentation of TNF receptor 1 on cell surface. DNA Cell Biol 2005; 24: 777–785.

    Article  CAS  Google Scholar 

  23. Schickel R, Park SM, Murmann AE, Peter ME . miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 2010; 38: 908–915.

    Article  CAS  Google Scholar 

  24. Bompard G, Martin M, Roy C, Vignon F, Freiss G . Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate. J Cell Sci 2003; 116 (Pt 12): 2519–2530.

    Article  CAS  Google Scholar 

  25. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005; 122: 957–968.

    Article  CAS  Google Scholar 

  26. Zhao ZS, Lim JP, Ng YW, Lim L, Manser E . The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell 2005; 20: 237–249.

    Article  CAS  Google Scholar 

  27. Hamada K, Shimizu T, Matsui T, Tsukita S, Hakoshima T . Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J 2000; 19: 4449–4462.

    Article  CAS  Google Scholar 

  28. Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R, Voronov S et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. Nature 2002; 420: 85–89.

    Article  CAS  Google Scholar 

  29. Ungefroren H, Voss M, Jansen M, Roeder C, Henne-Bruns D, Kremer B et al. Human pancreatic adenocarcinomas express Fas and Fas ligand yet are resistant to Fas-mediated apoptosis. Cancer Res 1998; 58: 1741–1749.

    CAS  PubMed  Google Scholar 

  30. Premont RT, Claing A, Vitale N, Perry SJ, Lefkowitz RJ . The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J Biol Chem 2000; 275: 22373–22380.

    Article  CAS  Google Scholar 

  31. Lahuna O, Quellari M, Achard C, Nola S, Meduri G, Navarro C et al. Thyrotropin receptor trafficking relies on the hScrib-betaPIX-GIT1-ARF6 pathway. EMBO J 2005; 24: 1364–1374.

    Article  CAS  Google Scholar 

  32. Gross C, Heumann R, Erdmann KS . The protein kinase C-related kinase PRK2 interacts with the protein tyrosine phosphatase PTP-BL via a novel PDZ domain binding motif. FEBS Lett 2001; 496: 101–104.

    Article  CAS  Google Scholar 

  33. Schmidt A, Durgan J, Magalhaes A, Hall A . Rho GTPases regulate PRK2/PKN2 to control entry into mitosis and exit from cytokinesis. EMBO J 2007; 26: 1624–1636.

    Article  CAS  Google Scholar 

  34. Neto H, Collins LL, Gould GW . Vesicle trafficking and membrane remodelling in cytokinesis. Biochem J 2011; 437: 13–24.

    Article  CAS  Google Scholar 

  35. Ai E, Skop AR . Endosomal recycling regulation during cytokinesis. Commun Integr Biol 2009; 2: 444–447.

    Article  CAS  Google Scholar 

  36. Schweitzer JK, D'Souza-Schorey C . A requirement for ARF6 during the completion of cytokinesis. Exp Cell Res 2005; 311: 74–83.

    Article  CAS  Google Scholar 

  37. Montagnac G, Sibarita JB, Loubery S, Daviet L, Romao M, Raposo G et al. ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr Biol 2009; 19: 184–195.

    Article  CAS  Google Scholar 

  38. Chesneau L, Dambournet D, Machicoane M, Kouranti I, Fukuda M, Goud B et al. An ARF6/Rab35 GTPase cascade for endocytic recycling and successful cytokinesis. Curr Biol 2012; 22: 147–153.

    Article  CAS  Google Scholar 

  39. Kouranti I, Sachse M, Arouche N, Goud B, Echard A . Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol 2006; 16: 1719–1725.

    Article  CAS  Google Scholar 

  40. Claing A, Perry SJ, Achiriloaie M, Walker JK, Albanesi JP, Lefkowitz RJ et al. Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. Proc Natl Acad Sci USA 2000; 97: 1119–1124.

    Article  CAS  Google Scholar 

  41. Premont RT, Claing A, Vitale N, Freeman JL, Pitcher JA, Patton WA et al. beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc Natl Acad Sci USA 1998; 95: 14082–14087.

    Article  CAS  Google Scholar 

  42. Steigemann P, Wurzenberger C, Schmitz MH, Held M, Guizetti J, Maar S et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 2009; 136: 473–484.

    Article  Google Scholar 

  43. Ganem NJ, Storchova Z, Pellman D . Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 2007; 17: 157–162.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Rolf Heumann for longstanding support. This work was supported by a grant from the German research foundation (SFB642) to KSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S Erdmann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagemann, N., Ackermann, N., Christmann, J. et al. The serologically defined colon cancer antigen-3 interacts with the protein tyrosine phosphatase PTPN13 and is involved in the regulation of cytokinesis. Oncogene 32, 4602–4613 (2013). https://doi.org/10.1038/onc.2012.485

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.485

Keywords

This article is cited by

Search

Quick links