Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Protein kinase C iota as a therapeutic target in alveolar rhabdomyosarcoma

Abstract

Alveolar rhabdomyosarcoma is an aggressive pediatric cancer exhibiting skeletal-muscle differentiation. New therapeutic targets are required to improve the dismal prognosis for invasive or metastatic alveolar rhabdomyosarcoma. Protein kinase C iota (PKCι) has been shown to have an important role in tumorigenesis of many cancers, but little is known about its role in rhabdomyosarcoma. Our gene-expression studies in human tumor samples revealed overexpression of PRKCI. We confirmed overexpression of PKCι at the mRNA and protein levels using our conditional mouse model that authentically recapitulates the progression of rhabdomyosarcoma in humans. Inhibition of Prkci by RNA interference resulted in a dramatic decrease in anchorage-independent colony formation. Interestingly, treatment of primary cell cultures using aurothiomalate (ATM), which is a gold-containing classical anti-rheumatic agent and a PKCι-specific inhibitor, resulted in decreased interaction between PKCι and Par6, decreased Rac1 activity and reduced cell viability at clinically relevant concentrations. Moreover, co-treatment with ATM and vincristine (VCR), a microtubule inhibitor currently used in rhabdomyosarcoma treatment regimens, resulted in a combination index of 0.470–0.793 through cooperative accumulation of non-proliferative multinuclear cells in the G2/M phase, indicating that these two drugs synergize. For in vivo tumor growth inhibition studies, ATM demonstrated a trend toward enhanced VCR sensitivity. Overall, these results suggest that PKCι is functionally important in alveolar rhabdomyosarcoma anchorage-independent growth and tumor-cell proliferation and that combination therapy with ATM and microtubule inhibitors holds promise for the treatment of alveolar rhabdomyosarcoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anderson J, Gordon A, Pritchard-Jones K, Shipley J . Genes, chromosomes, and rhabdomyosarcoma. Genes Chromosomes Cancer 1999; 26: 275–285.

    CAS  PubMed  Google Scholar 

  2. Hayes-Jordan A, Andrassy R . Rhabdomyosarcoma in children. Curr Opin Pediatr 2009; 21: 373–378.

    PubMed  Google Scholar 

  3. Arndt CA, Crist WM . Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 1999; 341: 342–352.

    CAS  PubMed  Google Scholar 

  4. Breneman JC, Lyden E, Pappo AS, Link MP, Anderson JR, Parham DM et al. Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma--a report from the Intergroup Rhabdomyosarcoma Study IV. J Clin Oncol 2003; 21: 78–84.

    PubMed  Google Scholar 

  5. Wachtel M, Schafer BW . Targets for cancer therapy in childhood sarcomas. Cancer Treat Rev 2010; 36: 318–327.

    CAS  PubMed  Google Scholar 

  6. Mackay HJ, Twelves CJ . Targeting the protein kinase C family: are we there yet? Nat Rev Cancer 2007; 7: 554–562.

    CAS  PubMed  Google Scholar 

  7. Griner EM, Kazanietz MG . Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 2007; 7: 281–294.

    CAS  PubMed  Google Scholar 

  8. Fields AP, Murray NR . Protein kinase C isozymes as therapeutic targets for treatment of human cancers. Adv Enzyme Regul 2008; 48: 166–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ali AS, Ali S, El-Rayes BF, Philip PA, Sarkar FH . Exploitation of protein kinase C: a useful target for cancer therapy. Cancer Treat Rev 2009; 35: 1–8.

    CAS  PubMed  Google Scholar 

  10. Chen L, Burger RA, Zaunbrecher GM, Cheng H, Lincoln AJ, Mallarino MC et al. Protein kinase C isoform expression and activity alter paclitaxel resistance in vitro. Gynecol Oncol 1999; 72: 171–179.

    CAS  PubMed  Google Scholar 

  11. Murray NR, Fields AP . Atypical protein kinase C iota protects human leukemia cells against drug-induced apoptosis. J Biol Chem 1997; 272: 27521–27524.

    CAS  PubMed  Google Scholar 

  12. Svensson K, Larsson C . A protein kinase Cbeta inhibitor attenuates multidrug resistance of neuroblastoma cells. BMC Cancer 2003; 3: 10.

    PubMed  PubMed Central  Google Scholar 

  13. Fields AP, Regala RP . Protein kinase C iota: human oncogene, prognostic marker and therapeutic target. Pharmacol Res 2007; 55: 487–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Regala RP, Weems C, Jamieson L, Khoor A, Edell ES, Lohse CM et al. Atypical protein kinase C iota is an oncogene in human non-small cell lung cancer. Cancer Res 2005; 65: 8905–8911.

    CAS  PubMed  Google Scholar 

  15. Ishiguro H, Akimoto K, Nagashima Y, Kojima Y, Sasaki T, Ishiguro-Imagawa Y et al. aPKClambda/iota promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6. Proc Natl Acad Sci USA 2009; 106: 16369–16374.

    CAS  PubMed  Google Scholar 

  16. Regala RP, Davis RK, Kunz A, Khoor A, Leitges M, Fields AP . Atypical protein kinase C{iota} is required for bronchioalveolar stem cell expansion and lung tumorigenesis. Cancer Res 2009; 69: 7603–7611.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Regala RP, Thompson EA, Fields AP . Atypical protein kinase C iota expression and aurothiomalate sensitivity in human lung cancer cells. Cancer Res 2008; 68: 5888–5895.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Regala RP, Weems C, Jamieson L, Copland JA, Thompson EA, Fields AP . Atypical protein kinase C iota plays a critical role in human lung cancer cell growth and tumorigenicity. J Biol Chem 2005; 280: 31109–31115.

    CAS  PubMed  Google Scholar 

  19. Scotti ML, Bamlet WR, Smyrk TC, Fields AP, Murray NR . Protein kinase C iota is required for pancreatic cancer cell transformed growth and tumorigenesis. Cancer Res 2010; 70: 2064–2074.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Win HY, Acevedo-Duncan M . Atypical protein kinase C phosphorylates IKKalphabeta in transformed non-malignant and malignant prostate cell survival. Cancer Lett 2008; 270: 302–311.

    CAS  PubMed  Google Scholar 

  21. Win HY, Acevedo-Duncan M . Role of protein kinase C-iota in transformed non-malignant RWPE-1 cells and androgen-independent prostate carcinoma DU-145 cells. Cell Prolif 2009; 42: 182–194.

    CAS  PubMed  Google Scholar 

  22. Zhang L, Huang J, Yang N, Liang S, Barchetti A, Giannakakis A et al. Integrative genomic analysis of protein kinase C (PKC) family identifies PKCiota as a biomarker and potential oncogene in ovarian carcinoma. Cancer Res 2006; 66: 4627–4635.

    CAS  PubMed  Google Scholar 

  23. Murray NR, Jamieson L, Yu W, Zhang J, Gokmen-Polar Y, Sier D et al. Protein kinase C iota is required for Ras transformation and colon carcinogenesis in vivo. J Cell Biol 2004; 164: 797–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Stallings-Mann M, Jamieson L, Regala RP, Weems C, Murray NR, Fields AP . A novel small-molecule inhibitor of protein kinase Ciota blocks transformed growth of non-small-cell lung cancer cells. Cancer Res 2006; 66: 1767–1774.

    CAS  PubMed  Google Scholar 

  25. Erdogan E, Lamark T, Stallings-Mann M, Lee J, Pellecchia M, Thompson EA et al. Aurothiomalate inhibits transformed growth by targeting the PB1 domain of protein kinase Ciota. J Biol Chem 2006; 281: 28450–28459.

    CAS  PubMed  Google Scholar 

  26. Etienne-Manneville S, Hall A . Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr Opin Cell Biol 2003; 15: 67–72.

    CAS  PubMed  Google Scholar 

  27. Murray NR, Kalari KR, Fields AP . Protein kinase Ciota expression and oncogenic signaling mechanisms in cancer. J Cell Physiol 2011; 226: 879–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cen L, Arnoczky KJ, Hsieh FC, Lin HJ, Qualman SJ, Yu S et al. Phosphorylation profiles of protein kinases in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 2007; 20: 936–946.

    CAS  PubMed  Google Scholar 

  29. Amstutz R, Wachtel M, Troxler H, Kleinert P, Ebauer M, Haneke T et al. Phosphorylation regulates transcriptional activity of PAX3/FKHR and reveals novel therapeutic possibilities. Cancer Res 2008; 68: 3767–3776.

    CAS  PubMed  Google Scholar 

  30. Fields AP, Frederick LA, Regala RP . Targeting the oncogenic protein kinase Ciota signalling pathway for the treatment of cancer. Biochem Soc Trans 2007; 35 (Part 5): 996–1000.

    CAS  PubMed  Google Scholar 

  31. Maroto B, Ye MB, von Lohneysen K, Schnelzer A, Knaus UG . P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene 2008; 27: 4900–4908.

    CAS  PubMed  Google Scholar 

  32. Wittmann T, Bokoch GM, Waterman-Storer CM . Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. J Biol Chem 2004; 279: 6196–6203.

    CAS  PubMed  Google Scholar 

  33. Woodcock SA, Rushton HJ, Castaneda-Saucedo E, Myant K, White GR, Blyth K et al. Tiam1-Rac signaling counteracts Eg5 during bipolar spindle assembly to facilitate chromosome congression. Curr Biol 2010; 20: 669–675.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Blocka KL, Paulus HE, Furst DE . Clinical pharmacokinetics of oral and injectable gold compounds. Clin Pharmacokinet 1986; 11: 133–143.

    CAS  PubMed  Google Scholar 

  35. Nelson RL . The comparative clinical pharmacology and pharmacokinetics of vindesine, vincristine, and vinblastine in human patients with cancer. Med Pediatr Oncol 1982; 10: 115–127.

    CAS  PubMed  Google Scholar 

  36. Houghton JA, Houghton PJ, Green AA . Chemotherapy of childhood rhabdomyosarcomas growing as xenografts in immune-deprived mice. Cancer Res 1982; 42: 535–539.

    CAS  PubMed  Google Scholar 

  37. Thompson J, George EO, Poquette CA, Cheshire PJ, Richmond LB, de Graaf SS et al. Synergy of topotecan in combination with vincristine for treatment of pediatric solid tumor xenografts. Clin Cancer Res 1999; 5: 3617–3631.

    CAS  PubMed  Google Scholar 

  38. Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the childrenss oncology group. J Clin Oncol 2002; 20: 2672–2679.

    CAS  PubMed  Google Scholar 

  39. Bouche M, Zappelli F, Polimeni M, Adamo S, Wetsel WC, Senni MI et al. Rapid activation and down-regulation of protein kinase C alpha in 12-O-Tetradecanoylphorbol-13-acetate-induced differentiation of human rhabdomyosarcoma cells. Cell Growth Differ 1995; 6: 845–852.

    CAS  PubMed  Google Scholar 

  40. Germani A, Fusco C, Martinotti S, Musaro A, Molinaro M, Zani BM . TPA-induced differentiation of human rhabdomyosarcoma cells involves dephosphorylation and nuclear accumulation of mutant P53. Biochem Biophys Res Commun 1994; 202: 17–24.

    CAS  PubMed  Google Scholar 

  41. Liu LN, Dias P, Houghton PJ . Mutation of Thr115 in MyoD positively regulates function in murine fibroblasts and human rhabdomyosarcoma cells. Cell Growth Differ 1998; 9: 699–711.

    CAS  PubMed  Google Scholar 

  42. Thimmaiah KN, Easton JB, Houghton PJ . Protection from rapamycin-induced apoptosis by insulin-like growth factor-I is partially dependent on protein kinase C signaling. Cancer Res 2010; 70: 2000–2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sundberg C, Thodeti CK, Kveiborg M, Larsson C, Parker P, Albrechtsen R et al. Regulation of ADAM12 cell-surface expression by protein kinase C epsilon. J Biol Chem 2004; 279: 51601–51611.

    CAS  PubMed  Google Scholar 

  44. Limatola C, Barabino B, Nista A, Santoni A . Interleukin 1-beta-induced protein kinase C-zeta activation is mimicked by exogenous phospholipase D. Biochem J 1997; 321 (Part 2): 497–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jordan MA, Thrower D, Wilson L . Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 1991; 51: 2212–2222.

    CAS  PubMed  Google Scholar 

  46. Tennyson GS, Burbach BJ, Lane BP . Reproductive potential of vincristine-treated multinucleate carcinoma cells. Cancer Treat Rep 1983; 67: 1113–1114.

    CAS  PubMed  Google Scholar 

  47. Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR . Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004; 18: 2614–2626.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Keller C, Hansen MS, Coffin CM, Capecchi MR . Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 2004; 18: 2608–2613.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nishijo K, Chen QR, Zhang L, McCleish AT, Rodriguez A, Cho MJ et al. Credentialing a preclinical mouse model of alveolar rhabdomyosarcoma. Cancer Res 2009; 69: 2902–2911.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rubin BP, Nishijo K, Chen HI, Yi X, Schuetze DP, Pal R et al. Evidence for an unanticipated relationship between undifferentiated pleomorphic sarcoma and embryonal rhabdomyosarcoma. Cancer Cell 2011; 19: 177–191.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NCI Grant 1R01CA133229-04 and -05 awarded to CK, NIH/NCI Grant 4R01CA081436-13 and the V Foundation for Cancer Research awarded to APF. Human tissue samples were provided by the Pediatric Cooperative Human Tissue network, which is funded by the National Cancer Institute. The Developmental Studies Hybridoma Bank is developed under the auspices of the NICHD and maintained by the University of Iowa, Iowa City, IA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Keller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuchi, K., Soundararajan, A., Zarzabal, L. et al. Protein kinase C iota as a therapeutic target in alveolar rhabdomyosarcoma. Oncogene 32, 286–295 (2013). https://doi.org/10.1038/onc.2012.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.46

Keywords

This article is cited by

Search

Quick links