Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interleukin enhancer-binding factor 3 promotes breast tumor progression by regulating sustained urokinase-type plasminogen activator expression

Abstract

Sustained urokinase-type plasminogen activator (uPA) expression is detected in aggressive breast tumors. Although uPA can be transiently upregulated by diverse extracellular stimuli, sustained, but not transiently upregulated uPA expression contributes to breast cancer invasion/metastasis. Unfortunately, how sustained uPA expression is achieved in invasive/metastatic breast cancer cells is unknown. Here, we show that sustained and transiently upregulated uPA expression are regulated by distinct mechanisms. Using a collection of transcription factor-targeted small-interfering RNAs, we discovered that interleukin enhancer-binding factor 3 (ILF3) is required for sustained uPA expression. Two discrete mechanisms mediate ILF3 action. The first is that ILF3 activates uPA transcription by binding to the CTGTT sequence in the nucleotides −1004−1000 of the uPA promoter; the second is that ILF3 inhibits the processing of uPA mRNA-targeting primary microRNAs (pri-miRNAs). Knockdown of ILF3 led to significant reduction in in vitro cell growth/migration/invasion and in vivo breast tumor development. Importantly, immunohistochemistry (IHC) showed that nuclear ILF3, but not cytoplasmic ILF3 staining correlates with elevated uPA level and higher grades of human breast tumor specimens. Nuclear localization of ILF3 highlights the role of ILF3 in sustained uPA expression as a transcription activator and pri-miRNA processing blocker. In conclusion, this study shows that ILF3 promotes breast tumorigenicity by regulating sustained uPA expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Blasi F . Proteolysis, cell adhesion, chemotaxis, and invasiveness are regulated by the u-PA-u-PAR-PAI-1 system. Thromb Haemost 1999; 82: 298–304.

    Article  CAS  PubMed  Google Scholar 

  2. Blasi F, Carmeliet P . uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 2002; 3: 932–943.

    Article  CAS  PubMed  Google Scholar 

  3. Duffy MJ, Maguire TM, McDermott EW, O’Higgins N . Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol 1999; 71: 130–135.

    Article  CAS  PubMed  Google Scholar 

  4. Annecke K, Schmitt M, Euler U, Zerm M, Paepke D, Paepke S et al. uPA and PAI-1 in breast cancer: review of their clinical utility and current validation in the prospective NNBC-3 trial. Adv Clin Chem 2008; 45: 31–45.

    Article  CAS  PubMed  Google Scholar 

  5. Harbeck N, Kates RE, Schmitt M, Gauger K, Kiechle M, Janicke F et al. Urokinase-type plasminogen activator and its inhibitor type 1 predict disease outcome and therapy response in primary breast cancer. Clin Breast Cancer 2004; 5: 348–352.

    Article  CAS  PubMed  Google Scholar 

  6. Mazumdar A, Adam L, Boyd D, Kumar R . Heregulin regulation of urokinase plasminogen activator and its receptor: human breast epithelial cell invasion. Cancer Res 2001; 61: 400–405.

    CAS  PubMed  Google Scholar 

  7. Dunn SE, Torres JV, Oh JS, Cykert DM, Barrett JC . Up-regulation of urokinase-type plasminogen activator by insulin-like growth factor-I depends upon phosphatidylinositol-3 kinase and mitogen-activated protein kinase kinase. Cancer Res 2001; 61: 1367–1374.

    CAS  PubMed  Google Scholar 

  8. Johnson MD, Torri JA, Lippman ME, Dickson RB . Regulation of motility and protease expression in PKC-mediated induction of MCF-7 breast cancer cell invasiveness. Exp Cell Res 1999; 247: 105–113.

    Article  CAS  PubMed  Google Scholar 

  9. Crippa MP . Urokinase-type plasminogen activator. Int J Biochem Cell Biol 2007; 39: 690–694.

    Article  CAS  PubMed  Google Scholar 

  10. Mahanivong C, Yu J, Huang S . Elevated urokinase-specific surface receptor expression is maintained through its interaction with urokinase plasminogen activator. Mol Carcinog 2007; 46: 165–175.

    Article  CAS  PubMed  Google Scholar 

  11. Noh H, Hong S, Dong Z, Pan ZK, Jing Q, Huang S . Impaired microRNA processing facilitates breast cancer cell invasion by upregulating urokinase-type plasminogen activator expression. Genes Cancer 2011; 2: 140–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aguirre Ghiso JA, Alonso DF, Farias EF, Gomez DE, de Kier Joffe EB . Deregulation of the signaling pathways controlling urokinase production. Its relationship with the invasive phenotype. Eur J Biochem 1999; 263: 295–304.

    Article  CAS  PubMed  Google Scholar 

  13. Kao PN, Chen L, Brock G, Ng J, Kenny J, Smith AJ et al. Cloning and expression of cyclosporin A- and FK506-sensitive nuclear factor of activated T-cells: NF45 and NF90. J Biol Chem 1994; 269: 20691–20699.

    CAS  PubMed  Google Scholar 

  14. Corthesy B, Kao PN . Purification by DNA affinity chromatography of two polypeptides that contact the NF-AT DNA binding site in the interleukin 2 promoter. J Biol Chem 1994; 269: 20682–20690.

    CAS  PubMed  Google Scholar 

  15. Shi L, Godfrey WR, Lin J, Zhao G, Kao PN . NF90 regulates inducible IL-2 gene expression in T cells. J Exp Med 2007; 204: 971–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duchange N, Pidoux J, Camus E, Sauvaget D . Alternative splicing in the human interleukin enhancer binding factor 3 (ILF3) gene. Gene 2000; 261: 345–353.

    Article  CAS  PubMed  Google Scholar 

  17. Reichman TW, Parrott AM, Fierro-Monti I, Caron DJ, Kao PN, Lee CG et al. Selective regulation of gene expression by nuclear factor 110, a member of the NF90 family of double-stranded RNA-binding proteins. J Mol Biol 2003; 332: 85–98.

    Article  CAS  PubMed  Google Scholar 

  18. Kiesler P, Haynes PA, Shi L, Kao PN, Wysocki VH, Vercelli D . NF45 and NF90 regulate HS4-dependent interleukin-13 transcription in T cells. J Biol Chem 2010; 285: 8256–8267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuwano Y, Kim HH, Abdelmohsen K, Pullmann R, Martindale JL, Yang X et al. MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol 2008; 28: 4562–4575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuwano Y, Pullmann R, Marasa BS, Abdelmohsen K, Lee EK, Yang X et al. NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. Nucleic Acids Res 2010; 38: 225–238.

    Article  CAS  PubMed  Google Scholar 

  21. Vumbaca F, Phoenix KN, Rodriguez-Pinto D, Han DK, Claffey KP . Double-stranded RNA-binding protein regulates vascular endothelial growth factor mRNA stability, translation, and breast cancer angiogenesis. Mol Cell Biol 2008; 28: 772–783.

    Article  CAS  PubMed  Google Scholar 

  22. Pei Y, Zhu P, Dang Y, Wu J, Yang X, Wan B et al. Nuclear export of NF90 to stabilize IL-2 mRNA is mediated by AKT-dependent phosphorylation at Ser647 in response to CD28 costimulation. J Immunol 2008; 180: 222–229.

    Article  CAS  PubMed  Google Scholar 

  23. Sakamoto S, Aoki K, Higuchi T, Todaka H, Morisawa K, Tamaki N et al. The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol 2009; 29: 3754–3769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fung LF, Lo AK, Yuen PW, Liu Y, Wang XH, Tsao SW . Differential gene expression in nasopharyngeal carcinoma cells. Life Sci 2000; 67: 923–936.

    Article  CAS  PubMed  Google Scholar 

  25. Guo NL, Wan YW, Tosun K, Lin H, Msiska Z, Flynn DC et al. Confirmation of gene expression-based prediction of survival in non-small cell lung cancer. Clin Cancer Res 2008; 14: 8213–8220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo Y, Fu P, Zhu H, Reed E, Remick SC, Petros W et al. Correlations among ERCC1, XPB, UBE2I, EGF, TAL2 and ILF3 revealed by ovarian cancer. Oncol Rep 2012; 27: 286–292.

    Article  CAS  PubMed  Google Scholar 

  27. Guan D, Altan-Bonnet N, Parrott AM, Arrigo CJ, Li Q, Khaleduzzaman M et al. Nuclear factor 45 (NF45) is a regulatory subunit of complexes with NF90/110 involved in mitotic control. Mol Cell Biol 2008; 28: 4629–4641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Price JE, Polyzos A, Zhang RD, Daniels LM . Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 1990; 50: 717–721.

    CAS  PubMed  Google Scholar 

  29. Bandyopadhyay A, Zhu Y, Cibull ML, Bao L, Chen C, Sun L . A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res 1999; 59: 5041–5046.

    CAS  PubMed  Google Scholar 

  30. Foekens JA, Peters HA, Look MP, Portengen H, Schmitt M, Kramer MD et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 2000; 60: 636–643.

    CAS  PubMed  Google Scholar 

  31. Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH . Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 2008; 34: 122–136.

    Article  CAS  PubMed  Google Scholar 

  32. Almholt K, Lund LR, Rygaard J, Nielsen BS, Dano K, Romer J et al. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Int J Cancer 2005; 113: 525–532.

    Article  CAS  PubMed  Google Scholar 

  33. Watabe T, Yoshida K, Shindoh M, Kaya M, Fujikawa K, Sato H et al. The Ets-1 and Ets-2 transcription factors activate the promoters for invasion-associated urokinase and collagenase genes in response to epidermal growth factor. Int J Cancer 1998; 77: 128–137.

    Article  CAS  PubMed  Google Scholar 

  34. Sliva D, English D, Lyons D, Lloyd FP . Protein kinase C induces motility of breast cancers by upregulating secretion of urokinase-type plasminogen activator through activation of AP-1 and NF-kappaB. Biochem Biophys Res Commun 2002; 290: 552–557.

    Article  CAS  PubMed  Google Scholar 

  35. Das R, Mahabeleshwar GH, Kundu GC . Osteopontin stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J Biol Chem 2003; 278: 28593–28606.

    Article  CAS  PubMed  Google Scholar 

  36. Das R, Mahabeleshwar GH, Kundu GC . Osteopontin induces AP-1-mediated secretion of urokinase-type plasminogen activator through c-Src-dependent epidermal growth factor receptor transactivation in breast cancer cells. J Biol Chem 2004; 279: 11051–11064.

    Article  CAS  PubMed  Google Scholar 

  37. Chen H, Zhu G, Li Y, Padia RN, Dong Z, Pan ZK et al. Extracellular signal-regulated kinase signaling pathway regulates breast cancer cell migration by maintaining slug expression. Cancer Res 2009; 69: 9228–9235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amorino GP, Hamilton VM, Valerie K, Dent P, Lammering G, Schmidt-Ullrich RK . Epidermal growth factor receptor dependence of radiation-induced transcription factor activation in human breast carcinoma cells. Mol Biol Cell 2002; 13: 2233–2244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vanden BW, Dijsselbloem N, Vermeulen L, Ndlovu MN, Boone E, Haegeman G . Attenuation of mitogen- and stress-activated protein kinase-1-driven nuclear factor-kappaB gene expression by soy isoflavones does not require estrogenic activity. Cancer Res 2006; 66: 4852–4862.

    Article  Google Scholar 

  40. Han Q, Leng J, Bian D, Mahanivong C, Carpenter KA, Pan ZK et al. Rac1-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J Biol Chem 2002; 277: 48379–48385.

    Article  CAS  PubMed  Google Scholar 

  41. Li H, Ye X, Mahanivong C, Bian D, Chun J, Huang S . Signaling mechanisms responsible for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. J Biol Chem 2005; 280: 10564–10571.

    Article  CAS  PubMed  Google Scholar 

  42. Mahanivong C, Chen HM, Yee SW, Pan ZK, Dong Z, Huang S . Protein kinase Calpha-CARMA3 signaling axis links Ras to NF-kappaB for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. Oncogene 2008; 27: 1273–1280.

    Article  CAS  PubMed  Google Scholar 

  43. Huang S, Chakrabarty S . Expression of antisense fibronectin RNA in human colon carcinoma cells disrupts the regulation of carcinoembryonic antigen by transforming growth factor beta 1. J Biol Chem 1994; 269: 28764–28768.

    CAS  PubMed  Google Scholar 

  44. Li Y, Kimura T, Huyck RW, Laity JH, Andrews GK . Zinc-induced formation of a coactivator complex containing the zinc-sensing transcription factor MTF-1, p300/CBP, and Sp1. Mol Cell Biol 2008; 28: 4275–4284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Su S, Li Y, Luo Y, Sheng Y, Su Y, Padia RN et al. Proteinase-activated receptor 2 expression in breast cancer and its role in breast cancer cell migration. Oncogene 2009; 28: 3047–3057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McCarty KS, Miller LS, Cox EB, Konrath J, McCarty KS . Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 1985; 109: 716–721.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from NIH CA093926 (SH), NSF of China Fund 81 073 134 (SBS) and Shanghai Eastern Scholar Fund (SH). We would like to thank Dr Michael Mathews for providing ILF3 splicing isoform constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Q., Lu, YY., Noh, H. et al. Interleukin enhancer-binding factor 3 promotes breast tumor progression by regulating sustained urokinase-type plasminogen activator expression. Oncogene 32, 3933–3943 (2013). https://doi.org/10.1038/onc.2012.414

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.414

Keywords

This article is cited by

Search

Quick links