Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of metastasis by HEXIM1 through effects on cell invasion and angiogenesis

Abstract

We report on the role of hexamethylene-bis-acetamide-inducible protein 1 (HEXIM1) as an inhibitor of metastasis. HEXIM1 expression is decreased in human metastatic breast cancers when compared with matched primary breast tumors. Similarly we observed decreased expression of HEXIM1 in lung metastasis when compared with primary mammary tumors in a mouse model of metastatic breast cancer, the polyoma middle T antigen (PyMT) transgenic mouse. Re-expression of HEXIM1 (through transgene expression or localized delivery of a small molecule inducer of HEXIM1 expression, hexamethylene-bis-acetamide) in PyMT mice resulted in inhibition of metastasis to the lung. Our present studies indicate that HEXIM1 downregulation of HIF-1α protein allows not only for inhibition of vascular endothelial growth factor-regulated angiogenesis, but also for inhibition of compensatory pro-angiogenic pathways and recruitment of bone marrow-derived cells (BMDCs). Another novel finding is that HEXIM1 inhibits cell migration and invasion that can be partly attributed to decreased membrane localization of the 67 kDa laminin receptor, 67LR, and inhibition of the functional interaction of 67LR with laminin. Thus, HEXIM1 re-expression in breast cancer has therapeutic advantages by simultaneously targeting more than one pathway involved in angiogenesis and metastasis. Our results also support the potential for HEXIM1 to indirectly act on multiple cell types to suppress metastatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gupta GP, Massagué J . Cancer metastasis: building a framework. Cell 2006; 127: 679–695.

    Article  CAS  Google Scholar 

  2. Kerbel RS . Tumor angiogenesis. N Engl J Med. 2008; 358: 2039–2049.

    Article  CAS  Google Scholar 

  3. Saltz LB, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 2008; 26: 2013–2019.

    Article  CAS  Google Scholar 

  4. Jain RK . Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58–62.

    Article  CAS  Google Scholar 

  5. Casanovas O, Hicklin DJ, Bergers G, Hanahan D . Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8: 299–309.

    Article  CAS  Google Scholar 

  6. Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 1997; 57: 963–969.

    CAS  Google Scholar 

  7. Grépin R, Pagès G . Molecular mechanisms of resistance to tumour anti-angiogenic strategies. J Oncol 2010; 2010: 835680.

    Article  Google Scholar 

  8. Ahn GO, Brown JM . Role of endothelial progenitors and other bone marrow-derived cells in the development of the tumor vasculature. Angiogenesis 2009; 12: 159–164.

    Article  CAS  Google Scholar 

  9. Wittmann BM, Wang N, Montano MM . Identification of a novel inhibitor of cell growth that is down-regulated by estrogens and decreased in breast tumors. Cancer Res 2003; 63: 5151–5158.

    CAS  Google Scholar 

  10. Ogba N, Doughman YQ, Chaplin LJ, Hu Y, Gargesha M, Watanabe M et al. HEXIM1 modulates vascular endothelial growth factor expression and function in breast epithelial cells and mammary gland. Oncogene 2010; 29: 3639–3649.

    Article  CAS  Google Scholar 

  11. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 2007; 13: 3207–3214.

    Article  CAS  Google Scholar 

  12. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Physiol 2003; 163: 2113–2126.

    Google Scholar 

  13. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 2006; 66: 11238–11246.

    Article  CAS  Google Scholar 

  14. Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI et al. Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci 2002; 99: 6967–6972.

    Article  CAS  Google Scholar 

  15. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76.

    Article  Google Scholar 

  16. Ogba N, Chaplin L, Doughman YQ, Fujinaga K, Montano MM . HEXIM1 regulates E2/ERα-mediated expression of Cyclin D1 in mammary cells via modulation of P-TEFb. Cancer Research 2008; 68: 7015–7024.

    Article  CAS  Google Scholar 

  17. Guilbaud NF, Gas N, Dupont MA, Valette A . Effects of differentiation-inducing agents on maturation of human MCF-7 breast cancer cells. J Cell Physiol 1990; 145: 162–172.

    Article  CAS  Google Scholar 

  18. Marks PA, Reuben R, Epner E, Breslow R, Cobb W, Bogden AE et al. Induction of murine erythroleukemia cells to differentiate: a model for the detection of new anti-tumor drugs. Antibiot Chemother 1978; 23: 33–41.

    Article  CAS  Google Scholar 

  19. Reuben RC, Wife RL, Breslow R, Rifkind RA, Marks PA . A new group of potent inducers of differentiation in murine erythroleukemia cells. Proc Natl Acad Sci 1976; 73: 862–866.

    Article  CAS  Google Scholar 

  20. Southard GL, Dunn RL, Garrett S . The drug delivery and biomaterial attributes of the ATRIGEL technology in the treatment of periodontal disease. Expert Opin Investig Drugs 1998; 7: 1483–1491.

    Article  CAS  Google Scholar 

  21. Gad HA, El-Nabarawi MA, Abd El-Hady SS . Formulation and evaluation of PLA and PLGA in situ implants containing secnidazole and/or doxycycline for treatment of periodontitis. AAPS Pharm Sci Tech 2008; 9: 878–884.

    Article  CAS  Google Scholar 

  22. Ravivarapu H, Moyer KL, Dunn RL . Sustained activity and release of leuprolide acetate from an in situ forming polymeric implant. AAPS Pharm Sci Tech 2000; 1: E1.

    CAS  Google Scholar 

  23. Young CW, Fanucchi MP, Declan Walsh T, Baltzer L, Yaldaei S, Stevens YW et al. Phase I trial and clinical pharmacological evaluation of hexamethylene bisacetamide administration by ten-day continuous intravenous infusion at twenty-eight-day intervals. Cancer Res 1988; 48: 7304–7309.

    CAS  PubMed  Google Scholar 

  24. Seagroves TN . The complexity of the HIF-1-dependent hypoxic response in breast cancer presents multiple avenues for therapeutic intervention. In: Lu Y, Mahato RI, (eds) Pharmaceutical Perspectives of Cancer Therapeutics. Springer, New York, 2009, pp 521–558.

    Chapter  Google Scholar 

  25. Wang J, Loberg R, Taichman RS . The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 2006; 25: 573–587.

    Article  CAS  Google Scholar 

  26. Dome B, Timar J, Ladanyi A, Paku S, Renyi-Vamos F, Klepetko W et al. Circulating endothelial cells, bone marrow-derived endothelial progenitor cells and proangiogenic hematopoietic cells in cancer: From biology to therapy. Crit Rev Oncol Hematol 2009; 69: 108–124.

    Article  Google Scholar 

  27. Gao D, Mittal V . The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends Mol Med 2009; 15: 333–343.

    Article  CAS  Google Scholar 

  28. Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT, Giaccia AJ . Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 2009; 15: 527–538.

    Article  CAS  Google Scholar 

  29. Udagawa T, Puder M, Wood M, Schaefer BC, D’Amato RJ . Analysis of tumor-associated stromal cells using SCID GFP transgenic mice: contribution of local and bone marrow-derived host cells. FASEB J. 2006; 20: 95–102.

    Article  CAS  Google Scholar 

  30. Hiratsuka S, Watanabe A, Aburatani H, Maru Y . Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006; 8: 1369–1375.

    Article  CAS  Google Scholar 

  31. Shojaei F, Wu X, Malik SK, Zhong C, Baldwin ME, Schanz S et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 2007; 8: 911–920.

    Article  Google Scholar 

  32. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004; 6: 409–421.

    Article  CAS  Google Scholar 

  33. Thiery JP, Sleeman JP . Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131–142.

    Article  CAS  Google Scholar 

  34. Castronovo V . Laminin receptors and laminin binding proteins during tumor invasion and metastasis. Invasion Metastasis 1993; 13: 1–30.

    CAS  Google Scholar 

  35. Givant-Horwitz V, Davidson B, Reich R . Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Cancer Res 2004; 64: 3572–3579.

    Article  CAS  Google Scholar 

  36. Montuori N, Sobel ME . The 67-kDa laminin receptor and tumor progression. Curr Top Microbiol Immunol 1996; 213: 205–214.

    CAS  PubMed  Google Scholar 

  37. Ardini E, Sporchia B, Pollegioni L, Modugno M, Ghirelli C, Castiglioni F et al. Identification of a novel function for 67-kDa laminin receptor: Increase in laminin degradation rate and release of motility fragment. Cancer Res 2002; 62: 1321–1325.

    CAS  PubMed  Google Scholar 

  38. Taylor MA, Lee YH, Schiemann WP . Role of TGF-beta and the tumor microenvironment during mammary tumorigenesis. Gene Expr 2011; 15: 117–132.

    Article  Google Scholar 

  39. de Graauw M, van Miltenburg MH, Schmidt MK, Pont C, Lalai R, Kartopawiro J et al. Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells. Proc Natl Acad Sci USA. 2010; 107: 6340–6345.

    Article  CAS  Google Scholar 

  40. Schietke R, Warnecke C, Wacker I, Schodel J, Mole DR, Campean V et al. The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J Biol Chem 2010; 285: 6658–6669.

    Article  CAS  Google Scholar 

  41. Barker HE, Chang J, Cox TR, Lang G, Bird D, Nicolau M et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res 2011; 71: 1561–1572.

    Article  CAS  Google Scholar 

  42. Nannuru KC, Futakuchi M, Varney ML, Vincent TM, Marcusson EG, Singh RK . Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer Res 2010; 70: 3494–3504.

    Article  CAS  Google Scholar 

  43. Semenza GL . Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3: 721–732.

    Article  CAS  Google Scholar 

  44. Liao D, Corle C, Seagroves TN, Johnson RS . Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res. 2007; 67: 563–572.

    Article  CAS  Google Scholar 

  45. Lee K, Qian DZ, Rey S, Wei H, Liu JO, Semenza GL . Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc Natl Acad Sci 2009; 106: 2353–2358.

    Article  CAS  Google Scholar 

  46. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004; 10: 858–864.

    Article  CAS  Google Scholar 

  47. Hoenig MR, Bianchi C, Sellke FW . Hypoxia inducible factor-1 alpha, endothelial progenitor cells, monocytes, cardiovascular risk, wound healing, cobalt and hydralazine: a unifying hypothesis. Curr Drug Targets 2008; 9: 422–435.

    Article  CAS  Google Scholar 

  48. Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008; 13: 206–220.

    Article  CAS  Google Scholar 

  49. Jiang M, Wang B, Wang C, He B, Fan H, Shao Q et al. In vivo enhancement of angiogenesis by adenoviral transfer of HIF-1alpha-modified endothelial progenitor cells (Ad-HIF-1alpha-modified EPC for angiogenesis). Int J Biochem Cell Biol 2008; 40: 2284–2289.

    Article  CAS  Google Scholar 

  50. Peinado H, Lavotshkin S, Lyden D . The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 2011; 21: 139–146.

    Article  CAS  Google Scholar 

  51. Gu YC, Kortesmaa J, Tryggvason K, Persson J, Ekblom P, Jacobsen SE et al. Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells. Blood 2003; 101: 877–885.

    Article  CAS  Google Scholar 

  52. Siler U, Seiffert M, Puch S, Richards A, Torok-Storb B, Müller CA et al. Characterization and functional analysis of laminin isoforms in human bone marrow. Blood 2000; 96: 4194–4203.

    CAS  PubMed  Google Scholar 

  53. Selleri C, Ragno P, Ricci P, Visconte V, Scarpato N, Carriero MV et al. The metastasis-associated 67-kDa laminin receptor is involved in G-CSF-induced hematopoietic stem cell mobilization. Blood 2006; 108: 2476–2484.

    Article  CAS  Google Scholar 

  54. Viacava P, Naccarato AG, Collecchi P, Menard S, Castronovo V, Bevilacqua G . The spectrum of 67-kD laminin receptor expression in breast carcinoma progression. J Pathol 1997; 182: 36–44.

    Article  CAS  Google Scholar 

  55. Hinek A . Nature and the multiple functions of the 67-kD elastin-/laminin binding protein. Cell Adhes Commun 1994; 2: 185–193.

    Article  CAS  Google Scholar 

  56. Magnifico A, Tagliabue E, Butò S, Ardini E, Castronovo V, Colnaghi MI et al. Peptide G, containing the binding site of the 67 kDa laminin receptor, increases and stabilizes laminin binding to cancer cells. J Biol Chem 1996; 271: 31179–31184.

    Article  CAS  Google Scholar 

  57. Buto S, Tagliabue E, Ardini E, Magnifico A, Ghirelli C, van den Brule F et al. Formation of the 67-kDa laminin receptor by acylation of the precursor. J Cell Biochem 1998; 69: 244–251.

    Article  CAS  Google Scholar 

  58. Westwell AD, Stevens MG . Hitting the chemotherapy jackpot: strategy, productivity and chemistry. Drug Discov Today. 2004; 9: 625–627.

    Article  Google Scholar 

  59. Ketchart W, Ogba N, Kresak A, Albert JM, Pink JJ, Montano MM . HEXIM1 is a critical determinant of the response to tamoxifen. Oncogene 2011; 30: 3563–3569.

    Article  CAS  Google Scholar 

  60. Smith KM, Ketchart W, Zhou X, Montano MM, Xu Y . Determination of hexamethylene bisacetamide, an antineoplastic compound, in mouse and human plasma by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879: 2206–2212.

    Article  CAS  Google Scholar 

  61. Montano MM, Ekena K, Delage-Mourroux R, Chang W, Martini P, Katzenellenbogen BS . An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc Natl Acad Sci USA 1999; 96: 6947–6952.

    Article  CAS  Google Scholar 

  62. Wittmann BM, Fujinaga K, Deng H, Ogba N, Montano MM . The breast cell growth inhibitor, estrogen down regulated gene 1, modulates a novel functional interaction between estrogen receptor alpha and transcriptional elongation factor cyclin T1. Oncogene 2005; 24: 5576–5588.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health grants CA92440 grant to MMM and R01CA118399 to AAE. WK was supported by a Scholarship for the Development of New Faculty Staff from the Chulalongkorn University in Thailand. The HPLC-MS-MS instrument used for HMBA analysis was funded by National Science Foundation MRI grant (CHE-0923308) to YX. KS is supported by a US Department of Education GAANN grant (P200A070595-08) to YX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Montano.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ketchart, W., Smith, K., Krupka, T. et al. Inhibition of metastasis by HEXIM1 through effects on cell invasion and angiogenesis. Oncogene 32, 3829–3839 (2013). https://doi.org/10.1038/onc.2012.405

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.405

Keywords

This article is cited by

Search

Quick links