Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells

Abstract

Glioblastoma multiforme (GBM) is the most aggressive and the commonest primary brain tumor with a tendency for local invasiveness. The pathways of neoplasia, invasion and inflammation are inextricably linked in cancer and aberrations in several regulatory pathways for these processes have been identified. Here we have studied the FAT1 (Homo sapiens FAT tumor-suppressor homolog 1 (Drosophila)) gene to identify its role in the tumorigenecity of the gliomas. The expression of FAT1 was found to be high in grade IV glioma cell lines (U87MG, A172, U373MG and T98G) but low in grade III glioma cell lines (GOS3 and SW1088). Two cell lines (U87MG and A172) with high FAT1 expression were chosen for in vitro FAT1-knockdown studies. FAT1 knockdown by small interfering RNA resulted in decreased migration and invasion of both the cell lines along with increased expression of the tumor-suppressor gene programmed cell death 4 (PDCD4). Increased PDCD4 expression led to the attenuation of activator protein-1 (AP-1) transcription by inhibiting c-Jun phosphorylation and resulted in concomitant decrease in the expression of AP-1-target genes like MMP3, VEGF-C and PLAU, the pro-inflammatory regulator COX-2 and cytokines IL1β and IL-6. Conversely, simultaneous silencing of PDCD4 and FAT1 in these cells significantly enhanced AP-1 activity and expression of its target genes, resulting in increase in mediators of inflammation and in enhanced migratory and invasive properties of the cells. We also observed a negative correlation between the expression of FAT1 and PDCD4 (P=0.0145), a positive correlation between the expression of FAT1 and COX-2 (P=0.048) and a similar positive trend between FAT1 and IL-6 expression in 35 primary human GBM samples studied. Taken together, this study identifies a novel signaling mechanism mediated by FAT1 in regulating the activity of PDCD4 and thereby the key transcription factor AP-1, which then affects known mediators of neoplasia and inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Grivennikov SI, Karin M . Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev 2010; 20: 65–71.

    CAS  PubMed  Google Scholar 

  2. Mantovani A, Allavena P, Sica A, Balkwill F . Cancer-related inflammation. Nature 2008; 454: 436–444.

    CAS  PubMed  Google Scholar 

  3. Moore MM, Chua W, Charles KA, Clarke SJ . Inflammation and cancer: causes and consequences. Clin Pharmacol Ther 2010; 87: 504–508.

    CAS  PubMed  Google Scholar 

  4. Mandal RK, Mittal RD . Polymorphisms in COX-2 gene influence prostate cancer susceptibility in a northern Indian cohort. Arch Med Res 42: 620–626.

    CAS  PubMed  Google Scholar 

  5. Garodia P, Ichikawa H, Malani N, Sethi G, Aggarwal BB . From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer. J Soc Integr Oncol 2007; 5: 25–37.

    PubMed  Google Scholar 

  6. Aggarwal BB, Gehlot P . Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol 2009; 9: 351–369.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Borrello MG, Degl'Innocenti D, Pierotti MA . Inflammation and cancer: the oncogene-driven connection. Cancer Lett 2008; 267: 262–270.

    CAS  PubMed  Google Scholar 

  8. Lim SK, Llaguno SR, McKay RM, Parada LF . Glioblastoma multiforme: a perspective on recent findings in human cancer and mouse models. BMB Rep 2011; 44: 158–164.

    CAS  PubMed  Google Scholar 

  9. Munshi A, Jalali R . Therapy for glioma: Indian perspective. Indian J Cancer 2009; 46: 127–131.

    CAS  PubMed  Google Scholar 

  10. Alves TR, Lima FR, Kahn SA, Lobo D, Dubois LG, Soletti R et al. Glioblastoma cells: a heterogeneous and fatal tumor interacting with the parenchyma. Life Sci 2011; 89: 532–539.

    CAS  PubMed  Google Scholar 

  11. Teodorczyk M, Martin-Villalba A . Sensing invasion: cell surface receptors driving spreading of glioblastoma. J Cell Physiol 2010; 222: 1–10.

    CAS  PubMed  Google Scholar 

  12. Noble M, Mayer-Proschel M . Growth factors, glia and gliomas. J Neurooncol 1997; 35: 193–209.

    CAS  PubMed  Google Scholar 

  13. Tafani M, Di Vito M, Frati A, Pellegrini L, De Santis E, Sette G et al. Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma. J Neuroinflammation 2011; 8: 32.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldbrunner RH, Bernstein JJ, Tonn JC . ECM-mediated glioma cell invasion. Microsc Res Tech 1998; 43: 250–257.

    Article  CAS  PubMed  Google Scholar 

  15. Balkwill F, Mantovani A . Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther 2010; 87: 401–406.

    CAS  PubMed  Google Scholar 

  16. Deorukhkar A, Krishnan S . Targeting inflammatory pathways for tumor radiosensitization. Biochem Pharmacol 2010; 80: 1904–1914.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. de Visser KE, Jonkers J . Towards understanding the role of cancer-associated inflammation in chemoresistance. Curr Pharm Des 2009; 15: 1844–1853.

    CAS  PubMed  Google Scholar 

  18. Tewari R, Choudhury SR, Ghosh S, Mehta VS, Sen E . Involvement of TNFalpha-induced TLR4-NF-kappaB and TLR4-HIF-1alpha feed-forward loops in the regulation of inflammatory responses in glioma. J Mol Med (Berl) 2012; 90: 67–80.

    CAS  Google Scholar 

  19. Chiu WT, Shen SC, Chow JM, Lin CW, Shia LT, Chen YC . Contribution of reactive oxygen species to migration/invasion of human glioblastoma cells U87 via ERK-dependent COX-2/PGE(2) activation. Neurobiol Dis 2009; 37: 118–129.

    PubMed  Google Scholar 

  20. Sharma V, Dixit D, Ghosh S, Sen E . COX-2 regulates the proliferation of glioma stem like cells. Neurochem Int 2011; 59: 567–571.

    CAS  PubMed  Google Scholar 

  21. Krakauer T . Molecular therapeutic targets in inflammation: cyclooxygenase and NF-kappaB. Curr Drug Targets Inflamm Allergy 2004; 3: 317–324.

    CAS  PubMed  Google Scholar 

  22. Dunne J, Hanby AM, Poulsom R, Jones TA, Sheer D, Chin WG et al. Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics 1995; 30: 207–223.

    CAS  PubMed  Google Scholar 

  23. Katoh Y, Katoh M . Comparative integromics on FAT1, FAT2, FAT3 and FAT4. Int J Mol Med 2006; 18: 523–528.

    CAS  PubMed  Google Scholar 

  24. Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R, Irvine KD . Delineation of a Fat tumor suppressor pathway. Nat Genet 2006; 38: 1142–1150.

    CAS  PubMed  Google Scholar 

  25. Reddy BV, Irvine KD . The Fat and Warts signaling pathways: new insights into their regulation, mechanism and conservation. Development 2008; 135: 2827–2838.

    CAS  PubMed  Google Scholar 

  26. Silva E, Tsatskis Y, Gardano L, Tapon N, McNeill H . The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr Biol 2006; 16: 2081–2089.

    CAS  PubMed  Google Scholar 

  27. Willecke M, Hamaratoglu F, Kango-Singh M, Udan R, Chen CL, Tao C et al. The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 2006; 16: 2090–2100.

    CAS  PubMed  Google Scholar 

  28. Bennett FC, Harvey KF . Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 2006; 16: 2101–2110.

    CAS  PubMed  Google Scholar 

  29. Mao Y, Rauskolb C, Cho E, Hu WL, Hayter H, Minihan G et al. Dachs: an unconventional myosin that functions downstream of Fat to regulate growth, affinity and gene expression in Drosophila. Development 2006; 133: 2539–2551.

    Article  CAS  PubMed  Google Scholar 

  30. Mahoney PA, Weber U, Onofrechuk P, Biessmann H, Bryant PJ, Goodman CS . The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell 1991; 67: 853–868.

    CAS  PubMed  Google Scholar 

  31. Kwaepila N, Burns G, Leong AS . Immunohistological localisation of human FAT1 (hFAT) protein in 326 breast cancers. Does this adhesion molecule have a role in pathogenesis? Pathology 2006; 38: 125–131.

    CAS  PubMed  Google Scholar 

  32. de Bock CE, Ardjmand A, Molloy TJ, Bone SM, Johnstone D, Campbell DM et al. The Fat1 cadherin is overexpressed and an independent prognostic factor for survival in paired diagnosis-relapse samples of precursor B-cell acute lymphoblastic leukemia. Leukemia 2011; 26: 918–926.

    PubMed  Google Scholar 

  33. Nishikawa Y, Miyazaki T, Nakashiro K, Yamagata H, Isokane M, Goda H et al. Human FAT1 cadherin controls cell migration and invasion of oral squamous cell carcinoma through the localization of beta-catenin. Oncol Rep 2011; 26: 587–592.

    CAS  PubMed  Google Scholar 

  34. Nakaya K, Yamagata HD, Arita N, Nakashiro KI, Nose M, Miki T et al. Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene 2007; 26: 5300–5308.

    CAS  PubMed  Google Scholar 

  35. Bendavid C, Pasquier L, Watrin T, Morcel K, Lucas J, Gicquel I et al. Phenotypic variability of a 4q34-->qter inherited deletion: MRKH syndrome in the daughter, cardiac defect and Fallopian tube cancer in the mother. Eur J Med Genet 2007; 50: 66–72.

    PubMed  Google Scholar 

  36. Chosdol K, Misra A, Puri S, Srivastava T, Chattopadhyay P, Sarkar C et al. Frequent loss of heterozygosity and altered expression of the candidate tumor suppressor gene 'FAT' in human astrocytic tumors. BMC Cancer 2009; 9: 5.

    PubMed  PubMed Central  Google Scholar 

  37. Lankat-Buttgereit B, Goke R . The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell 2009; 101: 309–317.

    CAS  PubMed  Google Scholar 

  38. Lankat-Buttgereit B, Goke R . Programmed cell death protein 4 (pdcd4): a novel target for antineoplastic therapy? Biol Cell 2003; 95: 515–519.

    CAS  PubMed  Google Scholar 

  39. Waters LC, Strong SL, Ferlemann E, Oka O, Muskett FW, Veverka V et al. Structure of the tandem MA-3 region of Pdcd4 protein and characterization of its interactions with eIF4A and eIF4G: molecular mechanisms of a tumor suppressor. J Biol Chem 2011; 286: 17270–17280.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao F, Zhang P, Zhou C, Li J, Wang Q, Zhu F et al. Frequent loss of PDCD4 expression in human glioma: possible role in the tumorigenesis of glioma. Oncol Rep 2007; 17: 123–128.

    CAS  PubMed  Google Scholar 

  41. Chen Y, Knosel T, Kristiansen G, Pietas A, Garber ME, Matsuhashi S et al. Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. J Pathol 2003; 200: 640–646.

    CAS  PubMed  Google Scholar 

  42. Santhanam AN, Baker AR, Hegamyer G, Kirschmann DA, Colburn NH . Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion. Oncogene 2010; 29: 3921–3932.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008; 27: 4373–4379.

    CAS  PubMed  Google Scholar 

  44. Wen YH, Shi X, Chiriboga L, Matsahashi S, Yee H, Afonja O . Alterations in the expression of PDCD4 in ductal carcinoma of the breast. Oncol Rep 2007; 18: 1387–1393.

    CAS  PubMed  Google Scholar 

  45. Wang Q, Sun Z, Yang HS . Downregulation of tumor suppressor Pdcd4 promotes invasion and activates both beta-catenin/Tcf and AP-1-dependent transcription in colon carcinoma cells. Oncogene 2008; 27: 1527–1535.

    CAS  PubMed  Google Scholar 

  46. Yasuda M, Schmid T, Rubsamen D, Colburn NH, Irie K, Murakami A . Downregulation of programmed cell death 4 by inflammatory conditions contributes to the generation of the tumor promoting microenvironment. Mol Carcinog 2010; 49: 837–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmid T, Bajer MM, Blees JS, Eifler LK, Milke L, Rubsamen D et al. Inflammation-induced loss of Pdcd4 is mediated by phosphorylation-dependent degradation. Carcinogenesis 2011; 32: 1427–1433.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang HS, AP Jansen, Nair R, Shibahara K, Verma AK, Cmarik JL et al. A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NF-kappaB or ODC transactivation. Oncogene 2001; 20: 669–676.

    CAS  PubMed  Google Scholar 

  49. Yang HS, Matthews CP, Clair T, Wang Q, Baker AR, Li CC et al. Tumorigenesis suppressor Pdcd4 down-regulates mitogen-activated protein kinase kinase kinase kinase 1 expression to suppress colon carcinoma cell invasion. Mol Cell Biol 2006; 26: 1297–1306.

    PubMed  PubMed Central  Google Scholar 

  50. Bitomsky N, Bohm M, Klempnauer KH . Transformation suppressor protein Pdcd4 interferes with JNK-mediated phosphorylation of c-Jun and recruitment of the coactivator p300 by c-Jun. Oncogene 2004; 23: 7484–7493.

    CAS  PubMed  Google Scholar 

  51. Fleenor DL, Pang IH, Clark AF . Involvement of AP-1 in interleukin-1alpha-stimulated MMP-3 expression in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 2003; 44: 3494–3501.

    PubMed  Google Scholar 

  52. Tsuji F, Seki I, Aono H, Odani N, Mizutani K, Okamoto M et al. Bucillamine mechanism inhibiting IL-1beta-induced VEGF production from fibroblast-like synoviocytes. Int Immunopharmacol 2007; 7: 1569–1576.

    CAS  PubMed  Google Scholar 

  53. Bhattacharya A, Lakka SS, Mohanam S, Boyd D, Rao JS . Regulation of the urokinase-type plasminogen activator receptor gene in different grades of human glioma cell lines. Clin Cancer Res 2001; 7: 267–276.

    CAS  PubMed  Google Scholar 

  54. Shen Q, Uray IP, Li Y, Krisko TI, Strecker TE, Kim HT et al. The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene 2008; 27: 366–377.

    Article  CAS  PubMed  Google Scholar 

  55. Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG . The activator protein-1 transcription factor in respiratory epithelium carcinogenesis. Mol Cancer Res 2007; 5: 109–120.

    CAS  PubMed  Google Scholar 

  56. Ozanne BW, McGarry L, Spence HJ, Johnston I, Winnie J, Meagher L et al. Transcriptional regulation of cell invasion: AP-1 regulation of a multigenic invasion programme. Eur J Cancer 2000; 36: 1640–1648.

    CAS  PubMed  Google Scholar 

  57. Leaner VD, Kinoshita I, Birrer MJ . AP-1 complexes containing cJun and JunB cause cellular transformation of Rat1a fibroblasts and share transcriptional targets. Oncogene 2003; 22: 5619–5629.

    CAS  PubMed  Google Scholar 

  58. Leaner VD, Chick JF, Donninger H, Linniola I, Mendoza A, Khanna C et al. Inhibition of AP-1 transcriptional activity blocks the migration, invasion, and experimental metastasis of murine osteosarcoma. Am J Pathol 2009; 174: 265–275.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu Y, Ludes-Meyers J, Zhang Y, Munoz-Medellin D, Kim HT, Lu C et al. Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene 2002; 21: 7680–7689.

    CAS  PubMed  Google Scholar 

  60. Palamarchuk A, Efanov A, Maximov V, Aqeilan RI, Croce CM, Pekarsky Y . Akt phosphorylates and regulates Pdcd4 tumor suppressor protein. Cancer Res 2005; 65: 11282–11286.

    CAS  PubMed  Google Scholar 

  61. Wang WQ, Zhang H, Wang HB, Sun YG, Peng ZH, Zhou G et al. Programmed cell death 4 (PDCD4) enhances the sensitivity of gastric cancer cells to TRAIL-induced apoptosis by inhibiting the PI3K/Akt signaling pathway. Mol Diagn Ther 2010; 14: 155–161.

    CAS  PubMed  Google Scholar 

  62. Yang HS, Knies JL, Stark C, Colburn NH . Pdcd4 suppresses tumor phenotype in JB6 cells by inhibiting AP-1 transactivation. Oncogene 2003; 22: 3712–3720.

    CAS  PubMed  Google Scholar 

  63. Angel P, Hattori K, Smeal T, Karin M . The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 1988; 55: 875–885.

    CAS  PubMed  Google Scholar 

  64. Schonthal A, Srinivas S, Eckhart W . Induction of c-jun protooncogene expression and transcription factor AP-1 activity by the polyoma virus middle-sized tumor antigen. Proc Natl Acad Sci USA 1992; 89: 4972–4976.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fuchs SY, Dolan L, Davis RJ, Ronai Z . Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase. Oncogene 1996; 13: 1531–1535.

    CAS  PubMed  Google Scholar 

  66. Fuchs SY, Xie B, Adler V, Fried VA, Davis RJ, Ronai Z . c-Jun NH2-terminal kinases target the ubiquitination of their associated transcription factors. J Biol Chem 1997; 272: 32163–32168.

    CAS  PubMed  Google Scholar 

  67. Zhang Z, DuBois RN . Detection of differentially expressed genes in human colon carcinoma cells treated with a selective COX-2 inhibitor. Oncogene 2001; 20: 4450–4456.

    CAS  PubMed  Google Scholar 

  68. Dannenberg AJ, Subbaramaiah K . Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell 2003; 4: 431–436.

    CAS  PubMed  Google Scholar 

  69. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 2009; 30: 377–386.

    CAS  PubMed  Google Scholar 

  70. Herseth JI, Refsnes M, Lag M, Schwarze PE . Role of IL-1 beta and COX2 in silica-induced IL-6 release and loss of pneumocytes in co-cultures. Toxicol In Vitro 2009; 23: 1342–1353.

    CAS  PubMed  Google Scholar 

  71. Subbaramaiah K, Cole PA, Dannenberg AJ . Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and -independent mechanisms. Cancer Res 2002; 62: 2522–2530.

    CAS  PubMed  Google Scholar 

  72. Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ . Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem 2002; 277: 18649–18657.

    CAS  PubMed  Google Scholar 

  73. Gao F, Wang X, Zhu F, Wang Q, Zhang X, Guo C et al. PDCD4 gene silencing in gliomas is associated with 5′CpG island methylation and unfavourable prognosis. J Cell Mol Med 2009; 13: 4257–4267.

    CAS  PubMed  Google Scholar 

  74. Fredlund E, Ringner M, Maris JM, Pahlman S . High Myc pathway activity and low stage of neuronal differentiation associate with poor outcome in neuroblastoma. Proc Natl Acad Sci USA 2008; 105: 14094–14099.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Moeller MJ, Soofi A, Braun GS, Li X, Watzl C, Kriz W et al. Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. EMBO J 2004; 23: 3769–3779.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tanoue T, Takeichi M . New insights into Fat cadherins. J Cell Sci 2005; 118: 2347–2353.

    CAS  PubMed  Google Scholar 

  77. Braun GS, Kretzler M, Heider T, Floege J, Holzman LB, Kriz W et al. Differentially spliced isoforms of FAT1 are asymmetrically distributed within migrating cells. J Biol Chem 2007; 282: 22823–22833.

    CAS  PubMed  Google Scholar 

  78. Tanoue T, Takeichi M . Mammalian Fat1 cadherin regulates actin dynamics and cell-cell contact. J Cell Biol 2004; 165: 517–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hou R, Liu L, Anees S, Hiroyasu S, Sibinga NE . The Fat1 cadherin integrates vascular smooth muscle cell growth and migration signals. J Cell Biol 2006; 173: 417–429.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Muraoka-Cook RS, Dumont N, Arteaga CL . Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res 2005; 11: 937s–943ss.

    CAS  PubMed  Google Scholar 

  81. de la Iglesia N, Konopka G, Puram SV, Chan JA, Bachoo RM, You MJ et al. Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev 2008; 22: 449–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nieves-Alicea R, Colburn NH, Simeone AM, Tari AM . Programmed cell death 4 inhibits breast cancer cell invasion by increasing tissue inhibitor of metalloproteinases-2 expression. Breast Cancer Res Treat 2009; 114: 203–209.

    CAS  PubMed  Google Scholar 

  83. Gaur AB, Holbeck SL, Colburn NH, Israel MA . Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro Oncol 2011; 13: 580–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Shibahara K, Asano M, Ishida Y, Aoki T, Koike T, Honjo T . Isolation of a novel mouse gene MA-3 that is induced upon programmed cell death. Gene 1995; 166: 297–301.

    CAS  PubMed  Google Scholar 

  85. Afonja O, Juste D, Das S, Matsuhashi S, Samuels HH . Induction of PDCD4 tumor suppressor gene expression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer cells. Evidence for a role in apoptosis. Oncogene 2004; 23: 8135–8145.

    CAS  PubMed  Google Scholar 

  86. Ding L, Zhang X, Zhao M, Qu Z, Huang S, Dong M et al. An essential role of PDCD4 in progression and malignant proliferation of gastrointestinal stromal tumors. Med Oncol 2012; 29: 1758–1764.

    CAS  PubMed  Google Scholar 

  87. Wei ZT, Zhang X, Wang XY, Gao F, Zhou CJ, Zhu FL et al. PDCD4 inhibits the malignant phenotype of ovarian cancer cells. Cancer Sci 2009; 100: 1408–1413.

    CAS  PubMed  Google Scholar 

  88. Wang X, Wei Z, Gao F, Zhang X, Zhou C, Zhu F et al. Expression and prognostic significance of PDCD4 in human epithelial ovarian carcinoma. Anticancer Res 2008; 28: 2991–2996.

    CAS  PubMed  Google Scholar 

  89. Leupold JH, Yang HS, Colburn NH, Asangani I, Post S, Allgayer H . Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene 2007; 26: 4550–4562.

    CAS  PubMed  Google Scholar 

  90. Mudduluru G, Medved F, Grobholz R, Jost C, Gruber A, Leupold JH et al. Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer 2007; 110: 1697–1707.

    CAS  PubMed  Google Scholar 

  91. Sen E . Targeting inflammation-induced transcription factor activation: an open frontier for glioma therapy. Drug Discov Today 2011; 16: 1044–1051.

    CAS  PubMed  Google Scholar 

  92. Sinha S, Koul N, Dixit D, Sharma V, Sen E . IGF-1 induced HIF-1alpha-TLR9 cross talk regulates inflammatory responses in glioma. Cell Signal 2011; 23: 1869–1875.

    CAS  PubMed  Google Scholar 

  93. Joki T, Heese O, Nikas DC, Bello L, Zhang J, Kraeft SK et al. Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res 2000; 60: 4926–4931.

    CAS  PubMed  Google Scholar 

  94. Shono T, Tofilon PJ, Bruner JM, Owolabi O, Lang FF . Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res 2001; 61: 4375–4381.

    CAS  PubMed  Google Scholar 

  95. Hara A, Okayasu I . Cyclooxygenase-2 and inducible nitric oxide synthase expression in human astrocytic gliomas: correlation with angiogenesis and prognostic significance. Acta Neuropathol 2004; 108: 43–48.

    CAS  PubMed  Google Scholar 

  96. Eberstal S, Badn W, Fritzell S, Esbjornsson M, Darabi A, Visse E et al. Inhibition of cyclooxygenase-2 enhances immunotherapy against experimental brain tumors. Cancer Immunol Immunother 2012; 61: 1191–1199.

    CAS  PubMed  Google Scholar 

  97. Sareddy GR, Geeviman K, Ramulu C, Babu PP . The nonsteroidal anti-inflammatory drug celecoxib suppresses the growth and induces apoptosis of human glioblastoma cells via the NF-kappaB pathway. J Neurooncol 2011; 106: 99–109.

    PubMed  Google Scholar 

  98. New P . Cyclooxygenase in the treatment of glioma: its complex role in signal transduction. Cancer Control 2004; 11: 152–164.

    PubMed  Google Scholar 

  99. Harris RE, Beebe-Donk J, Alshafie GA . Cancer chemoprevention by cyclooxygenase 2 (COX-2) blockade: results of case control studies. Subcell Biochem 2007; 42: 193–212.

    PubMed  Google Scholar 

  100. Harris RE, Beebe-Donk J, Alshafie GA . Reduced risk of human lung cancer by selective cyclooxygenase 2 (COX-2) blockade: results of a case control study. Int J Biol Sci 2007; 3: 328–334.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Harris RE . Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Subcell Biochem 2007; 42: 93–126.

    PubMed  Google Scholar 

  102. Demaria S, Pikarsky E, Karin M, Coussens LM, Chen YC, El-Omar EM et al. Cancer and inflammation: promise for biologic therapy. J Immunother 2010; 33: 335–351.

    PubMed  PubMed Central  Google Scholar 

  103. Huang C, Ma WY, Dawson MI, Rincon M, Flavell RA, Dong Z . Blocking activator protein-1 activity, but not activating retinoic acid response element, is required for the antitumor promotion effect of retinoic acid. Proc Natl Acad Sci USA 1997; 94: 5826–5830.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Iniguez MA, Martinez-Martinez S, Punzon C, Redondo JM, Fresno M . An essential role of the nuclear factor of activated T cells in the regulation of the expression of the cyclooxygenase-2 gene in human T lymphocytes. J Biol Chem 2000; 275: 23627–23635.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work has been supported by grant from Defense Research and Development Organization (DRDO), India (no. LSRB167-2008) to KC and National Brain Research Center, India, core intramural grant to SS. RF (Research fellowship) to BD and EM from Council of Scientific and Industrial Research (CSIR, India) and RF to KI from Indian Council of Medical Research (ICMR, India). We would like to acknowledge Dr Miguel Iniguez for providing COX-2 promoter luciferase plasmid and Dr Shayamal Goswami, Dr Balaji and Dr Sandeep Saxena for their help during the progress of the work. We thank our Lab technician Ms Jyoti and Lab attendants Late Mathura Prasad, Mr Pappu, Mr Gopal and Mr Ajay for their assistance in routine lab work and cell-culture work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Sinha or K Chosdol.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dikshit, B., Irshad, K., Madan, E. et al. FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells. Oncogene 32, 3798–3808 (2013). https://doi.org/10.1038/onc.2012.393

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.393

Keywords

This article is cited by

Search

Quick links