Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Progeny of Lgr5-expressing hair follicle stem cell contributes to papillomavirus-induced tumor development in epidermis

Abstract

Epidermal keratinocytes and hair follicle (HF) stem cells (SCs) expressing oncogenes are competent at developing squamous cell carcinomas (SCCs) in epidermis and HFs, respectively. To determine whether bulge and hair germ (HG) SCs from HF contribute to SCC generation at distant epidermis, the most frequent epidermal region where these lesions arise in human skin, we used a skin cancer mouse model expressing E6 and E7 oncoproteins from Human papillomavirus (HPV) 16 in SCs and basal keratinocytes. This previously described mouse model recapitulates the human skin papillomavirus-induced SCC pathology. We show that E6 and E7 expression promote the expansion of keratin 15 (K15)-expressing cells. These K15+ aberrant cells exhibit some HGSC markers and diminished expression of Tcf3 and Sox9 hair SC specification genes, which are accumulated in HFs and mislocalized to interfollicular epidermis. Leucine-rich G-protein-coupled receptor 5 (Lgr5)-expressing SCs, localized in the bulge and HG, are the origin of the expanded K15+ cell population. A large subset of the Lgr5+ SC progeny, expressing K15 and P-cadherin, is aberrantly mobilized to the upper region of HFs and the epidermis, and accumulates at E6/E7-induced pre-neoplastic lesions and epidermal tumors. These findings indicate that aberrant accumulation of altered SCs in HFs and their subsequent migration to the epidermis contribute to HPV-induced tumor development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Blanpain C, Fuchs E . Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009; 10: 207–217.

    Article  CAS  Google Scholar 

  2. Watt FM, Jensen KB . Epidermal stem cell diversity and quiescence. EMBO Mol Med 2009; 1: 260–267.

    Article  CAS  Google Scholar 

  3. Petersson M, Brylka H, Kraus A, John S, Rappl G, Schettina P et al. TCF/Lef1 activity controls establishment of diverse stem and progenitor cell compartments in mouse epidermis. Embo J 2011; 30: 3004–3018.

    Article  CAS  Google Scholar 

  4. Merrill BJ, Gat U, DasGupta R, Fuchs E . Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev 2001; 15: 1688–1705.

    Article  CAS  Google Scholar 

  5. Trempus CS, Morris RJ, Bortner CD, Cotsarelis G, Faircloth RS, Reece JM et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 2003; 120: 501–511.

    CAS  Google Scholar 

  6. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 2004; 22: 411–417.

    Article  CAS  Google Scholar 

  7. Rhee H, Polak L, Fuchs E . Lhx2 maintains stem cell character in hair follicles. Science 2006; 312: 1946–1949.

    Article  CAS  Google Scholar 

  8. Nowak JA, Polak L, Pasolli HA, Fuchs E . Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 2008; 3: 33–43.

    Article  CAS  Google Scholar 

  9. Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 2008; 40: 1291–1299.

    Article  CAS  Google Scholar 

  10. Hsu YC, Pasolli HA, Fuchs E . Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 2011; 144: 92–105.

    Article  CAS  Google Scholar 

  11. Muller-Rover S, Tokura Y, Welker P, Furukawa F, Wakita H, Takigawa M et al. E- and P-cadherin expression during murine hair follicle morphogenesis and cycling. Exp Dermatol 1999; 8: 237–246.

    Article  CAS  Google Scholar 

  12. Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 2009; 4: 155–169.

    Article  CAS  Google Scholar 

  13. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 2005; 11: 1351–1354.

    Article  CAS  Google Scholar 

  14. Alam M, Ratner D . Cutaneous squamous-cell carcinoma. N Engl J Med 2001; 344: 975–983.

    Article  CAS  Google Scholar 

  15. Schaper ID, Marcuzzi GP, Weissenborn SJ, Kasper HU, Dries V, Smyth N et al. Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8. Cancer Res 2005; 65: 1394–1400.

    Article  CAS  Google Scholar 

  16. Karagas MR, Nelson HH, Sehr P, Waterboer T, Stukel TA, Andrew A et al. Human papillomavirus infection and incidence of squamous cell and basal cell carcinomas of the skin. J Natl Cancer Inst 2006; 98: 389–395.

    Article  Google Scholar 

  17. Ghittoni R, Accardi R, Hasan U, Gheit T, Sylla B, Tommasino M . The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 2010; 40: 1–13.

    Article  CAS  Google Scholar 

  18. zur Hausen H . Papillomaviruses in the causation of human cancers—a brief historical account. Virology 2009; 384: 260–265.

    Article  CAS  Google Scholar 

  19. Hama N, Ohtsuka T, Yamazaki S . Detection of mucosal human papilloma virus DNA in bowenoid papulosis, Bowen’s disease and squamous cell carcinoma of the skin. J Dermatol 2006; 33: 331–337.

    Article  CAS  Google Scholar 

  20. Gormley RH, Groft CM, Miller CJ, Kovarik CL . Digital squamous cell carcinoma and association with diverse high-risk human papillomavirus types. J Am Acad Dermatol 2011; 64: 981–985.

    Article  Google Scholar 

  21. Moody CA, Laimins LA . Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 2010; 10: 550–560.

    Article  CAS  Google Scholar 

  22. Arbeit JM, Munger K, Howley PM, Hanahan D . Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J Virol 1994; 68: 4358–4368.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Coussens LM, Hanahan D, Arbeit JM . Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice. Am J Pathol 1996; 149: 1899–1917.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Boccardo E, Lepique AP, Villa LL . The role of inflammation in HPV carcinogenesis. Carcinogenesis 2010; 31: 1905–1912.

    Article  CAS  Google Scholar 

  25. Lapouge G, Youssef KK, Vokaer B, Achouri Y, Michaux C, Sotiropoulou PA et al. Identifying the cellular origin of squamous skin tumors. Proc Natl Acad Sci USA 2011; 108: 7431–7436.

    Article  CAS  Google Scholar 

  26. White AC, Tran K, Khuu J, Dang C, Cui Y, Binder SW et al. Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proc Natl Acad Sci USA 2011; 108: 7425–7430.

    Article  CAS  Google Scholar 

  27. Boxman IL, Hogewoning A, Mulder LH, Bouwes Bavinck JN, ter Schegget J . Detection of human papillomavirus types 6 and 11 in pubic and perianal hair from patients with genital warts. J Clin Microbiol 1999; 37: 2270–2273.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 2009; 4: 427–439.

    Article  CAS  Google Scholar 

  29. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 2010; 327: 1385–1389.

    Article  CAS  Google Scholar 

  30. Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, Fuchs E . Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 2005; 19: 1596–1611.

    Article  CAS  Google Scholar 

  31. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F . Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 2002; 22: 1172–1183.

    Article  CAS  Google Scholar 

  32. Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M, Anti M et al. The intestinal Wnt/TCF signature. Gastroenterology 2007; 132: 628–632.

    Article  CAS  Google Scholar 

  33. Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P et al. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 2008; 452: 650–653.

    Article  CAS  Google Scholar 

  34. Arwert EN, Lal R, Quist S, Rosewell I, van Rooijen N, Watt FM . Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate. Proc Natl Acad Sci USA 2010; 107: 19903–19908.

    Article  CAS  Google Scholar 

  35. Youssef KK, Van Keymeulen A, Lapouge G, Beck B, Michaux C, Achouri Y et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol 2010; 12: 299–305.

    Article  CAS  Google Scholar 

  36. Wong SY, Reiter JF . Wounding mobilizes hair follicle stem cells to form tumors. Proc Natl Acad Sci USA 2011; 108: 4093–4098.

    Article  CAS  Google Scholar 

  37. Meletis K, Wirta V, Hede SM, Nister M, Lundeberg J, Frisen J . p53 suppresses the self-renewal of adult neural stem cells. Development 2006; 133: 363–369.

    Article  CAS  Google Scholar 

  38. Liu Y, Elf SE, Miyata Y, Sashida G, Liu Y, Huang G et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 2009; 4: 37–48.

    Article  CAS  Google Scholar 

  39. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 2009; 138: 1083–1095.

    Article  CAS  Google Scholar 

  40. Lorz C, Garcia-Escudero R, Segrelles C, Garin MI, Ariza JM, Santos M et al. A functional role of RB-dependent pathway in the control of quiescence in adult epidermal stem cells revealed by genomic profiling. Stem Cell Rev 2010; 6: 162–177.

    Article  Google Scholar 

  41. Ruiz S, Santos M, Segrelles C, Leis H, Jorcano JL, Berns A et al. Unique and overlapping functions of pRb and p107 in the control of proliferation and differentiation in epidermis. Development 2004; 131: 2737–2748.

    Article  CAS  Google Scholar 

  42. Martinez-Cruz AB, Santos M, Lara MF, Segrelles C, Ruiz S, Moral M et al. Spontaneous squamous cell carcinoma induced by the somatic inactivation of retinoblastoma and Trp53 tumor suppressors. Cancer Res 2008; 68: 683–692.

    Article  CAS  Google Scholar 

  43. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W . Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001; 105: 533–545.

    Article  CAS  Google Scholar 

  44. Vidal VP, Chaboissier MC, Lutzkendorf S, Cotsarelis G, Mill P, Hui CC et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol 2005; 15: 1340–1351.

    Article  CAS  Google Scholar 

  45. Nguyen H, Rendl M, Fuchs E . Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 2006; 127: 171–183.

    Article  CAS  Google Scholar 

  46. McLaughlin-Drubin ME, Munger K . Oncogenic activities of human papillomaviruses. Virus Res 2009; 143: 195–208.

    Article  CAS  Google Scholar 

  47. Schober M, Fuchs E . Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-beta and integrin/focal adhesion kinase (FAK) signaling. Proc Natl Acad Sci USA 2011; 108: 10544–10549.

    Article  CAS  Google Scholar 

  48. Visvader JE, Lindeman GJ . Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012; 10: 717–728.

    Article  CAS  Google Scholar 

  49. Kasper M, Jaks V, Are A, Bergstrom A, Schwager A, Barker N et al. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc Natl Acad Sci USA 2011; 108: 4099–4104.

    Article  CAS  Google Scholar 

  50. Thomas M, Narayan N, Pim D, Tomaic V, Massimi P, Nagasaka K et al. Human papillomaviruses, cervical cancer and cell polarity. Oncogene 2008; 27: 7018–7030.

    Article  CAS  Google Scholar 

  51. de Visser KE, Korets LV, Coussens LM . De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005; 7: 411–423.

    Article  CAS  Google Scholar 

  52. Shinohara A, Yokoyama Y, Wan X, Takahashi Y, Mori Y, Takami T et al. Cytoplasmic/nuclear expression without mutation of exon 3 of the beta-catenin gene is frequent in the development of the neoplasm of the uterine cervix. Gynecol Oncol 2001; 82: 450–455.

    Article  CAS  Google Scholar 

  53. Rodriguez-Sastre MA, Gonzalez-Maya L, Delgado R, Lizano M, Tsubaki G, Mohar A et al. Abnormal distribution of E-cadherin and beta-catenin in different histologic types of cancer of the uterine cervix. Gynecol Oncol 2005; 97: 330–336.

    Article  CAS  Google Scholar 

  54. Bulut G, Fallen S, Beauchamp EM, Drebing LE, Sun J, Berry DL et al. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice. PLoS One 2011; 6: e27243.

    Article  CAS  Google Scholar 

  55. Muñoz P, Blanco R, Flores JM, Blasco MA . XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet 2005; 37: 1063–1071.

    Article  Google Scholar 

  56. Blanco R, Munoz P, Flores JM, Klatt P, Blasco MA . Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev 2007; 21: 206–220.

    Article  CAS  Google Scholar 

  57. Arbeit JM, Munger K, Howley PM, Hanahan D . Neuroepithelial carcinomas in mice transgenic with human papillomavirus type 16 E6/E7 ORFs. Am J Pathol 1993; 142: 1187–1197.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D Hanahan and JM Arbeit (NCI MMHCC Repository) for the K14-HPV16 mice, A Villanueva for helpful advice, S Gonzalo for critical reading of the manuscript, R Alvarez, J Comas and E Castaño (Universitat de Barcelona-SCT) for their technical support in flow cytometry and the IDIBELL animal facility service for mouse care. VdSD is funded by a Spanish Ministry of Science and Innovation fellowship, SSS is funded by a Spanish Ministry of Education fellowship and DRA and AVG received an IDIBELL fellowship. The research of PM’s group is supported by the Spanish Ministry of Science and Innovation (SAF2008-01173) and by the Catalan Department of Health (Generalitat de Catalunya).

Author contributions: Conception and design was provided by VdSD, SSS, DRA and PM. Collection and assembly of data was performed by VdSD, SSS, DRA, AVG, MU, RMP and GP. Data analysis and interpretation was done by VdSD, SSS, DRA, AVG, MU, RMP, GP, EGS, OC, FV, JMP, EB and PM. The manuscript was written by PM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Muñoz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva-Diz, V., Solé-Sánchez, S., Valdés-Gutiérrez, A. et al. Progeny of Lgr5-expressing hair follicle stem cell contributes to papillomavirus-induced tumor development in epidermis. Oncogene 32, 3732–3743 (2013). https://doi.org/10.1038/onc.2012.375

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.375

Keywords

This article is cited by

Search

Quick links