Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Decreased eIF3e/Int6 expression causes epithelial-to-mesenchymal transition in breast epithelial cells

Abstract

eIF3e/Int6 is a component of the multi-subunit eIF3 complex, which binds directly to the 40S ribosome to facilitate ribosome recruitment to mRNA and hence protein synthesis. Reduced expression of eIF3e/Int6 has been found in up to 37% of human breast cancers, and expression of a truncated mutant version of the mouse eIF3e/Int6 protein leads to malignant transformation of normal mammary cells. These findings suggest that eIF3e/Int6 is a tumor suppressor; however, a recent study has reported that a reduction of eIF3e/Int6 expression in breast cancer cells leads to reduced translation of oncogenes, suggesting that eIF3e/Int6 may in fact have an oncogenic role in breast cancer. To gain a better understanding of the role of eIF3e/Int6 in breast cancer, we have examined the effects of decreased eIF3e/Int6 expression in an immortalized breast epithelial cell line, MCF-10A. Surprisingly, we find that decreased expression of eIF3e/Int6 causes breast epithelial cells to undergo epithelial-to-mesenchymal transition (EMT). We show that EMT induced by a decrease in eIF3e/Int6 expression imparts invasive and migratory properties to breast epithelial cells, suggesting that regulation of EMT by eIF3e/Int6 may have an important role in breast cancer metastasis. Furthermore, we show that reduced eIF3e/Int6 expression in breast epithelial cells causes a specific increase in the expression of the key EMT regulators Snail1 and Zeb2, which occurs at both the transcriptional and post-transcriptional levels. Together, our data indicate a novel role of eIF3e/Int6 in the regulation of EMT in breast epithelial cells and support a tumor suppressor role of eIF3e/Int6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Marchetti A, Buttitta F, Pellegrini S, Bertacca G, Callahan R . Reduced expression of INT-6/eIF3-p48 in human tumors. Int J Oncol 2001; 18: 175–179.

    CAS  PubMed  Google Scholar 

  2. Rasmussen SB, Kordon E, Callahan R, Smith GH . Evidence for the transforming activity of a truncated Int6 gene, in vitro. Oncogene 2001; 20: 5291–5301.

    Article  CAS  PubMed  Google Scholar 

  3. Mack DL, Boulanger CA, Callahan R, Smith GH . Expression of truncated Int6/eIF3e in mammary alveolar epithelium leads to persistent hyperplasia and tumorigenesis. Breast Cancer Res 2007; 9: R42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marchetti A, Buttitta F, Miyazaki S, Gallahan D, Smith GH, Callahan R . Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary-tumor virus in mammary preneoplasia. J Virol 1995; 69: 1932–1938.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Morris C, Wittmann J, Jack HM, Jalinot P . Human INT6/eIF3e is required for nonsense-mediated mRNA decay. EMBO Rep 2007; 8: 596–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou CS, Arslan F, Wee S, Krishnan S, Ivanov AR, Oliva A et al. PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes. BMC Biol 2005; 3: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  7. LeFebvre AK, Korneeva NL, Trutschl M, Cvek U, Duzan RD, Bradley CA et al. Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. J Biol Chem 2006; 281: 22917–22932.

    Article  CAS  PubMed  Google Scholar 

  8. Yen HCS, Gordon C, Chang EC . Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome. Cell 2003; 112: 207–217.

    Article  CAS  PubMed  Google Scholar 

  9. Suo J, Snider SJ, Mills GB, Creighton CJ, Chen AC, Schiff R et al. Int6 regulates both proteasomal degradation and translation initiation and is critical for proper formation of acini by human mammary epithelium. Oncogene 2011; 30: 724–736.

    Article  CAS  PubMed  Google Scholar 

  10. Bandyopadhyay A, Matsumoto T, Maitra U . Fission yeast int6 is not essential for global translation initiation, but deletion of int6(+) causes hypersensitivity to caffeine and affects spore formation. Mol Biol Cell 2000; 11: 4005–4018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grzmil M, Rzymski T, Milani M, Harris AL, Capper RG, Saunders NJ et al. An oncogenic role of eIF3e/INT6 in human breast cancer. Oncogene 2010; 29: 4080–4089.

    Article  CAS  PubMed  Google Scholar 

  12. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thiery JP, Acloque H, Huang RYJ, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  14. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY et al. Snail and Slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 2009; 27: 2059–2068.

    Article  CAS  PubMed  Google Scholar 

  15. Ansieau S, Bastid J, Doreau A, Morel A-P, Bouchet BP, Thomas C et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 2008; 14: 79–89.

    Article  CAS  PubMed  Google Scholar 

  16. Zeisberg M, Neilson EG . Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 2009; 119: 1429–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barbera MJ, Puig I, Dominguez D, Julien-Grille S, Guaita-Esteruelas S, Peiro S et al. Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 2004; 23: 7345–7354.

    Article  CAS  PubMed  Google Scholar 

  18. Luo DC, Wang JX, Li J, Post M . Mouse Snail Is a target gene for HIF. Mol Cancer Res 2011; 9: 234–245.

    Article  CAS  PubMed  Google Scholar 

  19. Evdokimova V, Tognon C, Ng T, Ruzanov P, Melnyk N, Fink D et al. Translational activation of Snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell 2009; 15: 402–415.

    Article  CAS  PubMed  Google Scholar 

  20. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The mir-200 family and mir-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  21. Korpal M, Lee ES, Hu GH, Kang YB . The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910–14914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. Dual regulation of Snail by GSK-3[beta]-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004; 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

  23. Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM et al. Isolation and characterization of a spontaneously immortalized human breast epithelial-cell line, Mcf-10. Cancer Res 1990; 50: 6075–6086.

    CAS  PubMed  Google Scholar 

  24. Morris C, Jalinot P . Silencing of human Int-6 impairs mitosis progression and inhibits cyclin B-Cdk1 activation. Oncogene 2005; 24: 1203–1211.

    Article  CAS  PubMed  Google Scholar 

  25. Evdokimova V, Tognon C, Ng T, Sorensen PHB . Reduced proliferation and enhanced migration: two sides of the same coin? Molecular mechanisms of metastatic progression by YB-1. Cell Cycle 2009; 8: 2901–2906.

    Article  CAS  PubMed  Google Scholar 

  26. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  27. Barrallo-Gimeno A, Nieto MA . The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005; 132: 3151–3161.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou M, Sandercock AM, Fraser CS, Ridlova G, Stephens E, Schenauer MR et al. Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc Natl Acad Sci USA 2008; 105: 18139–18144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raun R, Brown CY, Morris DR . Analysis of ribosome loading onto mRNA species: implications for translational control. In: Richter J, (ed.) mRNA Formation and Function. Academic Press, New York, pp 305–321.

  30. Paine TM, Soule HD, Pauley RJ, Dawson PJ . Characterization of epithelial phenotypes in mortal and immortal human breast cells. Int J Cancer 1992; 50: 463–473.

    Article  CAS  PubMed  Google Scholar 

  31. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  32. Kozak M . Influences of messenger-RNA secondary structure on initiation by eukaryotic ribosomes. Proc Natl Acad Sci USA 1986; 83: 2850–2854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 2008; 22: 756–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiluiza D, Bargo S, Callahan R, Rhoads RE . Expression of truncated eukaryotic initiation factor 3e (eIF3e) resulting from integration of mouse mammary tumor virus (MMTV) causes a shift from cap-dependent to cap-independent translation. J Biol Chem 2011; 286: 31288–31296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jechlinger M, Grunert S, Tamir IH, Janda E, Ludemann S, Waerner T et al. Expression profiling of epithelial plasticity in tumor progression. Oncogene 2003; 22: 7155–7169.

    Article  CAS  PubMed  Google Scholar 

  36. Petz M, Kozina D, Huber H, Siwiec T, Seipelt J, Sommergruber W et al. The leader region of laminin B1 mRNA confers cap-independent translation. Nucleic Acids Res 2007; 35: 2473–2482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL, Howe PH . TGF-[beta]-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol 2010; 12: 286–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  39. Bustin SA . Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000; 25: 169–193.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao TT, Graber TE, Jordan LE, Cloutier M, Lewis SM, Goulet I et al. hnRNP A1 regulates ultraviolet-induced NF-kappa B signalling through destabilization of cIAP1 mRNA. Cell Death Diff 2009; 16: 244–252.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Craig McCormick for the generous gift of the retroviral transduction system used in this study, Dr Anirban Ghosh for advice on confocal immunofluorescence microscopy and Dr Martin Holcik for critical comments on the manuscript. This research was supported by a grant to SML from the Canadian Breast Cancer Foundation–Atlantic Chapter. SML is a Senior Scientist of the Beatrice Hunter Cancer Research Institute and a Canadian Institutes of Health Research–Regional Partnerships Program New Investigator (RSH-108667).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Lewis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillis, L., Lewis, S. Decreased eIF3e/Int6 expression causes epithelial-to-mesenchymal transition in breast epithelial cells. Oncogene 32, 3598–3605 (2013). https://doi.org/10.1038/onc.2012.371

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.371

Keywords

This article is cited by

Search

Quick links