Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

The DNA methylation landscape of small cell lung cancer suggests a differentiation defect of neuroendocrine cells

Abstract

Small cell lung cancer (SCLC) is a disease characterized by aggressive clinical behavior and lack of effective therapy. Owing to its tendency for early dissemination, only a third of patients have limited-stage disease at the time of diagnosis. SCLC is thought to derive from pulmonary neuroendocrine cells. Although several molecular abnormalities in SCLC have been described, there are relatively few studies on epigenetic alterations in this type of tumor. Here, we have used methylation profiling with the methylated-CpG island recovery assay in combination with microarrays and conducted the first genome-scale analysis of methylation changes that occur in primary SCLC and SCLC cell lines. Among the hundreds of tumor-specifically methylated genes discovered, we identified 73 gene targets that are methylated in >77% of primary SCLC tumors, most of which have never been linked to aberrant methylation in tumors. These methylated targets have potential for biomarker development for early detection and therapeutic management of SCLC. SCLC cell lines had a greater number of hypermethylated genes than primary tumors. Gene ontology analysis indicated a significant enrichment of methylated genes functioning as transcription factors and in processes of neuronal differentiation. Motif analysis of tumor-specific methylated regions identified enrichment of binding sites for several neural cell fate-specifying transcription factors including NEUROD1, HAND1, ZNF423 and REST. We hypothesize that two potential mechanisms, loss of cell fate-determining transcription factors by methylation of their promoters and functional inactivation of their corresponding genomic-binding sites by DNA methylation, can promote a differentiation defect of neuroendocrine cells thus enhancing the ability of tumor progenitor cells to transition toward SCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol 2006; 24: 4539–4544.

    Article  PubMed  Google Scholar 

  2. Wistuba II, Gazdar AF, Minna JD . Molecular genetics of small cell lung carcinoma. Semin Oncol 2001; 28: 3–13.

    Article  CAS  PubMed  Google Scholar 

  3. Sekido Y, Fong KM, Minna JD . Molecular genetics of lung cancer. Annu Rev Med 2003; 54: 73–87.

    Article  CAS  PubMed  Google Scholar 

  4. Modi S, Kubo A, Oie H, Coxon AB, Rehmatulla A, Kaye FJ . Protein expression of the RB-related gene family and SV40 large T antigen in mesothelioma and lung cancer. Oncogene 2000; 19: 4632–4639.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson BE, Ihde DC, Makuch RW, Gazdar AF, Carney DN, Oie H et al. myc family oncogene amplification in tumor cell lines established from small cell lung cancer patients and its relationship to clinical status and course. J Clin Invest 1987; 79: 1629–1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD . Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 1983; 306: 194–196.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi T, Obata Y, Sekido Y, Hida T, Ueda R, Watanabe H et al. Expression and amplification of myc gene family in small cell lung cancer and its relation to biological characteristics. Cancer Res 1989; 49: 2683–2688.

    CAS  PubMed  Google Scholar 

  8. Sattler M, Salgia R . Molecular and cellular biology of small cell lung cancer. Semin Oncol 2003; 30: 57–71.

    Article  CAS  PubMed  Google Scholar 

  9. Fischer B, Marinov M, Arcaro A . Targeting receptor tyrosine kinase signalling in small cell lung cancer (SCLC): what have we learned so far? Cancer Treat Rev 2007; 33: 391–406.

    Article  CAS  PubMed  Google Scholar 

  10. Sutherland KD, Proost N, Brouns I, Adriaensen D, Song JY, Berns A . Cell of origin of small cell lung cancer: inactivation of Trp53 and rb1 in distinct cell types of adult mouse lung. Cancer Cell 2011; 19: 754–764.

    Article  CAS  PubMed  Google Scholar 

  11. Park KS, Liang MC, Raiser DM, Zamponi R, Roach RR, Curtis SJ et al. Characterization of the cell of origin for small cell lung cancer. Cell Cycle 2011; 10: 2806–2815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sato M, Shames DS, Gazdar AF, Minna JD . A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol 2007; 2: 327–343.

    Article  PubMed  Google Scholar 

  13. Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP . Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 2000; 25: 315–319.

    Article  CAS  PubMed  Google Scholar 

  14. Lerman MI, Minna JD . The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res 2000; 60: 6116–6133.

    CAS  PubMed  Google Scholar 

  15. Laird PW . The power and the promise of DNA methylation markers. Nat Rev Cancer 2003; 3: 253–266.

    Article  CAS  PubMed  Google Scholar 

  16. Ushijima T . Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 2005; 5: 223–231.

    Article  CAS  PubMed  Google Scholar 

  17. Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 2001; 93: 691–699.

    Article  CAS  PubMed  Google Scholar 

  18. Dammann R, Takahashi T, Pfeifer GP . The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene 2001; 20: 3563–3567.

    Article  CAS  PubMed  Google Scholar 

  19. Sunaga N, Miyajima K, Suzuki M, Sato M, White MA, Ramirez RD et al. Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res 2004; 64: 4277–4285.

    Article  CAS  PubMed  Google Scholar 

  20. Kalari S, Pfeifer GP . Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet 2010; 70: 277–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rauch TA, Pfeifer GP . DNA methylation profiling using the methylated-CpG island recovery assay (MIRA). Methods 2010; 52: 213–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rauch TA, Zhong X, Wu X, Wang M, Kernstine KH, Wang Z et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci USA 2008; 105: 252–257.

    Article  CAS  PubMed  Google Scholar 

  23. Wu X, Rauch TA, Zhong X, Bennett WP, Latif F, Krex D et al. CpG island hypermethylation in human astrocytomas. Cancer Res 2010; 70: 2718–2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rauch T, Wang Z, Zhang X, Zhong X, Wu X, Lau SK et al. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci USA 2007; 104: 5527–5532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tommasi S, Karm DL, Wu X, Yen Y, Pfeifer GP . Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res 2009; 11: R14.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rauch TA, Pfeifer GP . The MIRA method for DNA methylation analysis. Methods Mol Biol 2009; 507: 65–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rauch TA, Wu X, Zhong X, Riggs AD, Pfeifer GP . A human B cell methylome at 100-base pair resolution. Proc Natl Acad Sci USA 2009; 106: 671–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toedling J, Skylar O, Krueger T, Fischer JJ, Sperling S, Huber W . Ringo—an R/Bioconductor package for analyzing ChIP-chip readouts. BMC Bioinformatics 2007; 8: 221.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hahn MA, Hahn T, Lee DH, Esworthy RS, Kim BW, Riggs AD et al. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res 2008; 68: 10280–10289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reinert T, Modin C, Castano FM, Lamy P, Wojdacz TK, Hansen LL et al. Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res 2011; 17: 5582–5592.

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez J, Munoz M, Vives L, Frangou CG, Groudine M, Peinado MA . Bivalent domains enforce transcriptional memory of DNA methylated genes in cancer cells. Proc Natl Acad Sci USA 2008; 105: 19809–19814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takeshima H, Yamashita S, Shimazu T, Niwa T, Ushijima T . The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands. Genome Res 2009; 19: 1974–1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 2008; 40: 741–750.

    Article  CAS  PubMed  Google Scholar 

  34. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010; 466: 253–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38: 576–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee NH, Haas BJ, Letwin NE, Frank BC, Luu TV, Sun Q et al. Cross-talk of expression quantitative trait loci within 2 interacting blood pressure quantitative trait loci. Hypertension 2007; 50: 1126–1133.

    Article  CAS  PubMed  Google Scholar 

  37. Piper M, Barry G, Hawkins J, Mason S, Lindwall C, Little E et al. NFIA controls telencephalic progenitor cell differentiation through repression of the Notch effector Hes1. J Neurosci 2010; 30: 9127–9139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suzuki MM, Bird A . DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008; 9: 465–476.

    Article  CAS  PubMed  Google Scholar 

  39. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  40. Smith LT, Lin M, Brena RM, Lang JC, Schuller DE, Otterson GA et al. Epigenetic regulation of the tumor suppressor gene TCF21 on 6q23-q24 in lung and head and neck cancer. Proc Natl Acad Sci USA 2006; 103: 982–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Warming S, Rachel RA, Jenkins NA, Copeland NG . Zfp423 is required for normal cerebellar development. Mol Cell Biol 2006; 26: 6913–6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang S, Laoukili J, Epping MT, Koster J, Holzel M, Westerman BA et al. ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 2009; 15: 328–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Holzel M, Huang S, Koster J, Ora I, Lakeman A, Caron H et al. NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell 2010; 142: 218–229.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qureshi IA, Gokhan S, Mehler MF . RESTand CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions. Cell Cycle 2010; 9: 4477–4486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Majumder S . REST in good times and bad: roles in tumor suppressor and oncogenic activities. Cell Cycle 2006; 5: 1929–1935.

    Article  CAS  PubMed  Google Scholar 

  46. Coulson JM . Transcriptional regulation: cancer, neurons and the REST. Curr Biol 2005; 15: R665–R668.

    Article  CAS  PubMed  Google Scholar 

  47. Coulson JM, Edgson JL, Woll PJ, Quinn JP . A splice variant of the neuron-restrictive silencer factor repressor is expressed in small cell lung cancer: a potential role in derepression of neuroendocrine genes and a useful clinical marker. Cancer Res 2000; 60: 1840–1844.

    CAS  PubMed  Google Scholar 

  48. Kreisler A, Strissel PL, Strick R, Neumann SB, Schumacher U, Becker CM . Regulation of the NRSF/REST gene by methylation and CREB affects the cellular phenotype of small-cell lung cancer. Oncogene 2010; 29: 5828–5838.

    Article  CAS  PubMed  Google Scholar 

  49. Neptune ER, Podowski M, Calvi C, Cho JH, Garcia JG, Tuder R et al. Targeted disruption of NeuroD, a proneural basic helix-loop-helix factor, impairs distal lung formation and neuroendocrine morphology in the neonatal lung. J Biol Chem 2008; 283: 21160–21169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 2011; 480: 490–495.

    CAS  PubMed  Google Scholar 

  51. Xiong Z, Laird PW . COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 1997; 25: 2532–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Quinlan AR, Hall IM . BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26: 841–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Linhart C, Halperin Y, Shamir R . Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets. Genome Res 2008; 18: 1180–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  PubMed  Google Scholar 

  55. Huang da W, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Steven Bates for culturing SCLC cell lines. This work was supported by the National Institutes of Health grant CA084469 to GPP and by generous funds from an anonymous donor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G P Pfeifer.

Ethics declarations

Competing interests

Under a licensing agreement between City of Hope and Active Motif (Carlsbad, CA, USA), the MIRA technique was licensed to Active Motif, and the author GPP is entitled to a share of the royalties received by City of Hope from sales of the licensed technology. The rest of the authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalari, S., Jung, M., Kernstine, K. et al. The DNA methylation landscape of small cell lung cancer suggests a differentiation defect of neuroendocrine cells. Oncogene 32, 3559–3568 (2013). https://doi.org/10.1038/onc.2012.362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.362

Keywords

This article is cited by

Search

Quick links