Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The mTOR inhibitor rapamycin opposes carcinogenic changes to epidermal Akt1/PKBα isoform signaling

Abstract

Epidermal squamous cell carcinoma (SCC) is the most aggressive non-melanoma skin cancer and is dramatically increased in patients undergoing immunosuppression following solid organ transplantation, contributing substantially to morbidity and mortality. Recent clinical studies show that use of the mammalian target of rapamycin (mTOR) inhibitor rapamycin as a post-transplantation immunosuppressive significantly reduces SCC occurrence compared with other immunosuppressives, though the mechanism is not fully understood. We show that rapamycin selectively upregulates epidermal Akt1, while failing to upregulate epidermal Akt2. Rapamycin increases epidermal Akt1 phosphorylation via inhibition of the mTOR complex 1-dependent regulation of insulin receptor substrate-1. Epidermal Akt1 is commonly downregulated in SCC while Akt2 is upregulated. We now demonstrate similar Akt1 downregulation and Akt2 upregulation by ultraviolet (UV) radiation, the most important skin carcinogen. Hence, rapamycin’s upregulation of Akt1 signaling could potentially oppose the effects of UV radiation and/or tumor-associated changes on Akt1 signaling. We show in skin culture that rapamycin does enhance restoration of Akt1 phosphorylation in skin recovering from UV radiation, suggesting a mechanism for rapamycin’s antitumor activity in epidermis in spite of its efficient immunosuppressive properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mitchell C . The importance of skin cancer prevention in organ transplant patients an editorial to paper by Salgo: ‘switch to sirolimus in long-term renal transplant recipients: reduced premalignancies and nonmelanoma skin cancer in a controlled, prospective, randomized, blinded study’. Am J Transplant 2010; 10: 1343–1344.

    Article  CAS  Google Scholar 

  2. Alberu J, Pascoe MD, Campistol JM, Schena FP, Rial Mdel C, Polinsky M et al. Lower malignancy rates in renal allograft recipients converted to sirolimus-based, calcineurin inhibitor-free immunotherapy: 24-month results from the CONVERT trial. Transplantation 2011; 92: 303–310.

    Article  CAS  Google Scholar 

  3. Salgo R, Gossmann J, Schofer H, Kachel HG, Kuck J, Geiger H et al. Switch to a sirolimus-based immunosuppression in long-term renal transplant recipients: reduced rate of (pre-)malignancies and nonmelanoma skin cancer in a prospective, randomized, assessor-blinded, controlled clinical trial. Am J Transplant 2010; 10: 1385–1393.

    Article  CAS  Google Scholar 

  4. Wulff BC, Kusewitt DF, VanBuskirk AM, Thomas-Ahner JM, Duncan FJ, Oberyszyn TM . Sirolimus reduces the incidence and progression of UVB-induced skin cancer in SKH mice even with co-administration of cyclosporine A. J Invest Dermatol 2008; 128: 2467–2473.

    Article  CAS  Google Scholar 

  5. de Gruijl FR, Koehl GE, Voskamp P, Strik A, Rebel HG, Gaumann A et al. Early and late effects of the immunosuppressants rapamycin and mycophenolate mofetil on UV carcinogenesis. Int J Cancer 2010; 8: 8.

    Google Scholar 

  6. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002; 8: 128–135.

    Article  CAS  Google Scholar 

  7. Geissler EK, Schlitt HJ . Transplantation: can sirolimus prevent skin cancer in transplant recipients? Nat Rev Nephrol 2010; 6: 639–641.

    Article  CAS  Google Scholar 

  8. Segrelles C, Ruiz S, Perez P, Murga C, Santos M, Budunova IV et al. Functional roles of Akt signaling in mouse skin tumorigenesis. Oncogene 2002; 21: 53–64.

    Article  CAS  Google Scholar 

  9. Mao JH, To MD, Perez-Losada J, Wu D, Del Rosario R, Balmain A et al. Mutually exclusive mutations of the Pten and ras pathways in skin tumor progression. Genes Dev 2004; 18: 1800–1805.

    Article  CAS  Google Scholar 

  10. Calautti E, Li J, Saoncella S, Brissette JL, Goetinck PF . Phosphoinositide 3-kinase signaling to Akt promotes keratinocyte differentiation versus death. J Biol Chem 2005; 280: 32856–32865.

    Article  CAS  Google Scholar 

  11. Thrash BR, Menges CW, Pierce RH, McCance DJ . AKT1 provides an essential survival signal required for differentiation and stratification of primary human keratinocytes. J Biol Chem 2006; 281: 12155–12162.

    Article  CAS  Google Scholar 

  12. O’Shaughnessy RF, Welti JC, Cooke JC, Avilion AA, Monks B, Birnbaum MJ et al. AKT-dependent HspB1 (Hsp27) activity in epidermal differentiation. J Biol Chem 2007; 282: 17297–17305.

    Article  Google Scholar 

  13. O’Shaughnessy RF, Akgul B, Storey A, Pfister H, Harwood CA, Byrne C . Cutaneous human papillomaviruses down-regulate AKT1, whereas AKT2 up-regulation and activation associates with tumors. Cancer Res 2007; 67: 8207–8215.

    Article  Google Scholar 

  14. Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M et al. Role of translocation in the activation and function of protein kinase B. J Biol Chem 1997; 272: 31515–31524.

    Article  CAS  Google Scholar 

  15. Frech M, Andjelkovic M, Ingley E, Reddy KK, Falck JR, Hemmings BA . High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J Biol Chem 1997; 272: 8474–8481.

    Article  CAS  Google Scholar 

  16. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 1997; 7: 261–269.

    Article  CAS  Google Scholar 

  17. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098–1101.

    Article  CAS  Google Scholar 

  18. Inoki K, Li Y, Zhu T, Wu J, Guan KL . TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4: 648–657.

    Article  CAS  Google Scholar 

  19. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 2002; 10: 151–162.

    Article  CAS  Google Scholar 

  20. Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem 2003; 278: 10189–10194.

    Article  CAS  Google Scholar 

  21. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007; 9: 316–323.

    Article  CAS  Google Scholar 

  22. Zoncu R, Efeyan A, Sabatini DM . mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21–35.

    Article  CAS  Google Scholar 

  23. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 2004; 166: 213–223.

    Article  CAS  Google Scholar 

  24. Shah OJ, Wang Z, Hunter T . Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 2004; 14: 1650–1656.

    Article  CAS  Google Scholar 

  25. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M . Sticker M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004; 431: 200–205.

    Article  CAS  Google Scholar 

  26. Tzatsos A, Kandror KV . Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol 2006; 26: 63–76.

    Article  CAS  Google Scholar 

  27. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006; 66: 1500–1508.

    Article  Google Scholar 

  28. Zhao L, Vogt PK, Class I . PI3K in oncogenic cellular transformation. Oncogene 2008; 27: 5486–5496.

    Article  CAS  Google Scholar 

  29. Lu ZH, Shvartsman MB, Lee AY, Shao JM, Murray MM, Kladney RD et al. Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. Cancer Res 2010; 70: 3287–3298.

    Article  CAS  Google Scholar 

  30. O’Shaughnessy RF, Welti JC, Sully K, Byrne C . Akt-dependent Pp2a activity is required for epidermal barrier formation during late embryonic development. Development 2009; 136: 3423–3431.

    Article  Google Scholar 

  31. Baden HP, Kubilus J . The growth and differentiation of cultured newborn rat keratinocytes. J Invest Dermatol 1983; 80: 124–130.

    Article  CAS  Google Scholar 

  32. Janes SM, Ofstad TA, Campbell DH, Watt FM, Prowse DM . Transient activation of FOXN1 in keratinocytes induces a transcriptional programme that promotes terminal differentiation: contrasting roles of FOXN1 and Akt. J Cell Sci 2004; 117 (Pt 18): 4157–4168.

    Article  CAS  Google Scholar 

  33. Harrington LS, Findlay GM, Lamb RF . Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci 2005; 30: 35–42.

    Article  CAS  Google Scholar 

  34. Berg CE, Lavan BE, Rondinone CM . Rapamycin partially prevents insulin resistance induced by chronic insulin treatment. Biochem Biophys Res Commun 2002; 293: 1021–1027.

    Article  CAS  Google Scholar 

  35. Zhande R, Mitchell JJ, Wu J, Sun XJ . Molecular mechanism of insulin-induced degradation of insulin receptor substrate 1. Mol Cell Biol 2002; 22: 1016–1026.

    Article  CAS  Google Scholar 

  36. Pirola L, Bonnafous S, Johnston AM, Chaussade C, Portis F, Van Obberghen E . Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells. J Biol Chem 2003; 278: 15641–15651.

    Article  CAS  Google Scholar 

  37. Sun XJ, Rothenberg P, Kahn CR . Backer JM, Araki E, Wilden PA, et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 1991; 352: 73–77.

    Article  CAS  Google Scholar 

  38. Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM et al. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 2000; 14: 783–794.

    Article  CAS  Google Scholar 

  39. Gual P, Le Marchand-Brustel Y, Tanti JF . Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005; 87: 99–109.

    Article  CAS  Google Scholar 

  40. Esposito DL, Li Y, Cama A, Quon MJ . Tyr(612) and Tyr(632) in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells. Endocrinology 2001; 142: 2833–2840.

    Article  CAS  Google Scholar 

  41. Boura-Halfon S, Zick Y . Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 2009; 296: 26.

    Article  Google Scholar 

  42. Pfeifer GP, Besaratinia A . UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem Photobiol Sci 2012; 11: 90–97.

    Article  CAS  Google Scholar 

  43. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 2008; 26: 1603–1610.

    Article  CAS  Google Scholar 

  44. Koehl GE, Spitzner M, Ousingsawat J, Schreiber R, Geissler EK, Kunzelmann K . Rapamycin inhibits oncogenic intestinal ion channels and neoplasia in APC(Min/+) mice. Oncogene 2010; 29: 1553–1560.

    Article  CAS  Google Scholar 

  45. Rao RR, Li Q, Odunsi K, Shrikant PA . The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 2010; 32: 67–78.

    Article  Google Scholar 

  46. Gan X, Wang J, Su B, Wu D . Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 2011; 286: 10998–11002.

    Article  CAS  Google Scholar 

  47. Tato I, Bartrons R, Ventura F, Rosa JL . Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling. J Biol Chem 2011; 286: 6128–6142.

    Article  CAS  Google Scholar 

  48. Gonzalez E, McGraw TE . The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 2009; 8: 2502–2508.

    Article  CAS  Google Scholar 

  49. Sadagurski M, Nofech-Mozes S, Weingarten G, White MF, Kadowaki T, Wertheimer E . Insulin receptor substrate 1 (IRS-1) plays a unique role in normal epidermal physiology. J Cell Physiol 2007; 213: 519–527.

    Article  CAS  Google Scholar 

  50. Wertheimer E, Spravchikov N, Trebicz M, Gartsbein M, Accili D, Avinoah I et al. The regulation of skin proliferation and differentiation in the IR null mouse: implications for skin complications of diabetes. Endocrinology 2001; 142: 1234–1241.

    Article  CAS  Google Scholar 

  51. Sadagurski M, Yakar S, Weingarten G, Holzenberger M, Rhodes CJ, Breitkreutz D et al. Insulin-like growth factor 1 receptor signaling regulates skin development and inhibits skin keratinocyte differentiation. Mol Cell Biol 2006; 26: 2675–2687.

    Article  CAS  Google Scholar 

  52. Wang Z, Pedersen E, Basse A, Lefever T, Peyrollier K, Kapoor S et al. Rac1 is crucial for Ras-dependent skin tumor formation by controlling Pak1-Mek-Erk hyperactivation and hyperproliferation in vivo. Oncogene 2010; 29: 3362–3373.

    Article  CAS  Google Scholar 

  53. Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 2001; 15: 2203–2208.

    Article  CAS  Google Scholar 

  54. Haratake A, Uchida Y, Schmuth M, Tanno O, Yasuda R, Epstein JH et al. UVB-induced alterations in permeability barrier function: roles for epidermal hyperproliferation and thymocyte-mediated response. J Invest Dermatol 1997; 108: 769–775.

    Article  CAS  Google Scholar 

  55. Yamamoto A, Serizawa S, Ito M, Sato Y . Stratum corneum lipid abnormalities in atopic dermatitis. Arch Dermatol Res 1991; 283: 219–223.

    Article  CAS  Google Scholar 

  56. Kim MA, Kim HJ, Jee HJ, Kim AJ, Bae YS, Bae SS et al. Akt2, but not Akt1, is required for cell survival by inhibiting activation of JNK and p38 after UV irradiation. Oncogene 2009; 19: 19.

    Google Scholar 

  57. Yuan ZQ, Feldman RI, Sun M, Olashaw NE, Coppola D, Sussman GE et al. Inhibition of JNK by cellular stress- and tumor necrosis factor alpha-induced AKT2 through activation of the NF kappa B pathway in human epithelial Cells. J Biol Chem 2002; 277: 29973–29982.

    Article  CAS  Google Scholar 

  58. Cao C, Wan Y . Parameters of protection against ultraviolet radiation-induced skin cell damage. J Cell Physiol 2009; 220: 277–284.

    Article  CAS  Google Scholar 

  59. Wang HQ, Quan T, He T, Franke TF, Voorhees JJ, Fisher GJ . Epidermal growth factor receptor-dependent, NF-kappaB-independent activation of the phosphatidylinositol 3-kinase/Akt pathway inhibits ultraviolet irradiation-induced caspases-3, -8, and -9 in human keratinocytes. J Biol Chem 2003; 278: 45737–45745.

    Article  CAS  Google Scholar 

  60. Meeran SM, Katiyar N, Singh T, Katiyar SK . Loss of endogenous interleukin-12 activates survival signals in ultraviolet-exposed mouse skin and skin tumors. Neoplasia 2009; 11: 846–855.

    Article  CAS  Google Scholar 

  61. Demehri S, Turkoz A, Kopan R . Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell 2009; 16: 55–66.

    Article  CAS  Google Scholar 

  62. Hsieh AC, Bo R, Manola J, Vazquez F, Bare O, Khvorova A et al. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens. Nucl Acids Res 2004; 32: 893–901.

    Article  CAS  Google Scholar 

  63. Reeve VE, Domanski D, Slater M . Radiation sources providing increased UVA/UVB ratios induce photoprotection dependent on the UVA dose in hairless mice. Photochem Photobiol 2006; 82: 406–411.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the British Skin Foundation 941S, a Medical Research Council DTA studentship for OA and a Royal Society International Outgoing Short Visit VO0872438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Byrne.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sully, K., Akinduro, O., Philpott, M. et al. The mTOR inhibitor rapamycin opposes carcinogenic changes to epidermal Akt1/PKBα isoform signaling. Oncogene 32, 3254–3262 (2013). https://doi.org/10.1038/onc.2012.338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.338

Keywords

This article is cited by

Search

Quick links