Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Real-time imaging of the dynamics of death receptors and therapeutics that overcome TRAIL resistance in tumors

Abstract

Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induces apoptosis specifically in tumor cells and its efficacy has been tested in pre-clinical models by delivering it systemically as a purified ligand or via engineered stem cells (SC). However, about 50% of tumor lines are resistant to TRAIL and overcoming TRAIL resistance in aggressive tumors, such as glioblastoma-multiforme (GBM), and understanding the molecular dynamics of TRAIL-based combination therapies are critical to broadly use TRAIL as a therapeutic agent. In this study, we developed death receptor (DR)4/5-reporters that offer an imaging-based platform to identify agents that act in concert with a potent, secretable variant of TRAIL (S-TRAIL) by monitoring changes in DR4/5 expression. Utilizing these reporters, we show a differential regulation of DR4/5 when exposed to a panel of clinically relevant agents. A histone deacetylase inhibitor, MS-275, resulted in upregulation of DR4/5 in all GBM cell lines, and these changes could be followed in real time both in vitro and in vivo in mice bearing tumors and they correlated with increased TRAIL sensitivity. To further assess the dynamics of combinatorial strategies that overcome resistance of tumors to SC released S-TRAIL, we also engineered tumor cells to express live-cell caspase-reporters and SCs to express S-TRAIL. Utilizing DR4/5 and caspase reporters in parallel, we show that MS-275 sensitizes TRAIL-resistant GBM cells to stem cell (SC) delivered S-TRAIL by changing the time-to-death in vitro and in vivo. This study demonstrates the effectiveness of a combination of real-time reporters of TRAIL-induced apoptosis pathway in evaluating the efficacy of SC-TRAIL-based therapeutics and may have implications in targeting a broad range of cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Huse JT, Holland EC . Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 2010; 10: 319–331.

    Article  CAS  PubMed  Google Scholar 

  2. Wiezorek J, Holland P, Graves J . Death receptor agonists as a targeted therapy for cancer. Clin Cancer Res 2010; 16: 1701–1708.

    Article  CAS  PubMed  Google Scholar 

  3. Ashkenazi A . Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 2008; 7: 1001–1012.

    Article  CAS  PubMed  Google Scholar 

  4. Shah K, Hingtgen S, Kasmieh R, Figueiredo JL, Garcia-Garcia E, Martinez-Serrano A et al. Bimodal viral vectors and in vivo imaging reveal the fate of human neural stem cells in experimental glioma model. J Neurosci 2008; 28: 4406–4413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shah K, Bureau E, Kim DE, Yang K, Tang Y, Weissleder R et al. Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 2005; 57: 34–41.

    Article  CAS  PubMed  Google Scholar 

  6. Hingtgen SD, Kasmieh R, van de Water J, Weissleder R, Shah K . A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy. Stem Cells 2010; 28: 832–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 2009; 106: 4822–4827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK . Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 2009; 459: 428–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raizer JJ, Abrey LE, Lassman AB, Chang SM, Lamborn KR, Kuhn JG et al. A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol 2010; 12: 95–103.

    Article  CAS  PubMed  Google Scholar 

  10. Prince HM, Bishton MJ, Harrison SJ . Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 2009; 15: 3958–3969.

    Article  CAS  PubMed  Google Scholar 

  11. Neyns B, Sadones J, Joosens E, Bouttens F, Verbeke L, Baurain JF et al. Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann Oncol 2009; 20: 1596–1603.

    Article  CAS  PubMed  Google Scholar 

  12. Nagar S . Pharmacokinetics of anti-cancer drugs used in breast cancer chemotherapy. Adv Exp Med Biol 2010; 678: 124–132.

    Article  CAS  PubMed  Google Scholar 

  13. Mrugala MM, Chamberlain MC . Mechanisms of disease: temozolomide and glioblastoma—look to the future. Nat Clin Pract Oncol 2008; 5: 476–486.

    Article  CAS  PubMed  Google Scholar 

  14. McDermott U, Pusapati RV, Christensen JG, Gray NS, Settleman J . Acquired resistance of non-small cell lung cancer cells to MET kinase inhibition is mediated by a switch to epidermal growth factor receptor dependency. Cancer Res 2010; 70: 1625–1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006; 9: 341–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crosswell HE, Dasgupta A, Alvarado CS, Watt T, Christensen JG, De P et al. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells. BMC Cancer 2009; 9: 411.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Albeck JG, Burke JM, Spencer SL, Lauffenburger DA, Sorger PK . Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol 2008; 6: 2831–2852.

    Article  CAS  PubMed  Google Scholar 

  18. Ashkenazi A, Herbst RS . To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 2008; 118: 1979–1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang A, Wilson NS, Ashkenazi A . Proapoptotic DR4 and DR5 signaling in cancer cells: toward clinical translation. Curr Opin Cell Biol 2010; 22: 837–844.

    Article  CAS  PubMed  Google Scholar 

  20. Nagane M, Shimizu S, Mori E, Kataoka S, Shiokawa Y . Predominant antitumor effects by fully human anti-TRAIL-receptor2 (DR5) monoclonal antibodies in human glioma cells in vitro and in vivo. Neuro Oncol 2010; 12: 687–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, de Jong S . Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochem Biophys Acta 2010; 1805: 123–140.

    CAS  PubMed  Google Scholar 

  22. Liu X, Yue P, Chen S, Hu L, Lonial S, Khuri FR et al. The proteasome inhibitor PS-341 (bortezomib) up-regulates DR5 expression leading to induction of apoptosis and enhancement of TRAIL-induced apoptosis despite up-regulation of c-FLIP and survivin expression in human NSCLC cells. Cancer Res 2007; 67: 4981–4988.

    Article  CAS  PubMed  Google Scholar 

  23. Dhandapani L, Yue P, Ramalingam SS, Khuri FR, Sun SY . Retinoic acid enhances TRAIL-induced apoptosis in cancer cells by upregulating TRAIL receptor 1 expression. Cancer Res 2011; 71: 5245–5254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sung B, Park B, Yadav VR, Aggarwal BB . Celastrol a triterpene, enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and up-regulation of death receptors. J Biol Chem 2010; 285: 11498–11507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prasad S, Ravindran J, Sung B, Pandey MK, Aggarwal BB . Garcinol potentiates TRAIL-induced apoptosis through modulation of death receptors and antiapoptotic proteins. Mol Cancer Ther 2010; 9: 856–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim MO, Moon DO, Kang CH, Kwon TK, Choi YH, Kim GY . beta-Ionone enhances TRAIL-induced apoptosis in hepatocellular carcinoma cells through Sp1-dependent upregulation of DR5 and downregulation of NF-kappaB activity. Mol Cancer Ther 2010; 9: 833–843.

    Article  CAS  PubMed  Google Scholar 

  27. Song JH, Kandasamy K, Kraft AS . ABT-737 induces expression of the death receptor 5 and sensitizes human cancer cells to TRAIL-induced apoptosis. J Biol Chem 2008; 283: 25003–25013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoshida T, Shiraishi T, Nakata S, Horinaka M, Wakada M, Mizutani Y et al. Proteasome inhibitor MG132 induces death receptor 5 through CCAAT/enhancer-binding protein homologous protein. Cancer Res 2005; 65: 5662–5667.

    Article  CAS  PubMed  Google Scholar 

  29. Baritaki S, Huerta-Yepez S, Sakai T, Spandidos DA, Bonavida B . Chemotherapeutic drugs sensitize cancer cells to TRAIL-mediated apoptosis: up-regulation of DR5 and inhibition of Yin Yang 1. Mol Cancer Ther 2007; 6: 1387–1399.

    Article  CAS  PubMed  Google Scholar 

  30. Singh TR, Shankar S, Srivastava RK . HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 2005; 24: 4609–4623.

    Article  CAS  PubMed  Google Scholar 

  31. Wood TE, Dalili S, Simpson CD, Sukhai MA, Hurren R, Anyiwe K et al. Selective inhibition of histone deacetylases sensitizes malignant cells to death receptor ligands. Mol Cancer Ther 2010; 9: 246–256.

    Article  CAS  PubMed  Google Scholar 

  32. Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T . Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 2004; 23: 6261–6271.

    Article  CAS  PubMed  Google Scholar 

  33. Aguilera DG, Das CM, Sinnappah-Kang ND, Joyce C, Taylor PH, Wen S et al. Reactivation of death receptor 4 (DR4) expression sensitizes medulloblastoma cell lines to TRAIL. J Neurooncol 2009; 93: 303–318.

    Article  CAS  PubMed  Google Scholar 

  34. Finlay D, Richardson RD, Landberg LK, Howes AL, Vuori K . Novel HTS strategy identifies TRAIL-sensitizing compounds acting specifically through the caspase-8 apoptotic axis. PLoS One 2010; 5: e13375.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Booth NL, Sayers TJ, Brooks AD, Thomas CL, Jacobsen K, Goncharova EI et al. A cell-based high-throughput screen to identify synergistic TRAIL sensitizers. Cancer Immunol Immunother 2009; 58: 1229–1244.

    Article  PubMed  Google Scholar 

  36. Bagci-Onder T, Wakimoto H, Anderegg M, Cameron C, Shah K . A dual PI3K/mTOR inhibitor, PI-103, cooperates with stem cell-delivered TRAIL in experimental glioma models. Cancer Res 2011; 71: 154–163.

    Article  CAS  PubMed  Google Scholar 

  37. Hingtgen S, Ren X, Terwilliger E, Classon M, Weissleder R, Shah K . Targeting multiple pathways in gliomas with stem cell and viral delivered S-TRAIL and Temozolomide. Mol Cancer Ther 2008; 7: 3575–3585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Albeck JG, Burke JM, Aldridge BB, Zhang M, Lauffenburger DA, Sorger PK . Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 2008; 30: 11–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kock N, Kasmieh R, Weissleder R, Shah K . Tumor therapy mediated by lentiviral expression of shBcl-2 and S-TRAIL. Neoplasia 2007; 9: 435–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Shi-Yon Sun for providing pDR4 and pDR5 basic constructs; real-time PCR core facility of Neuroscience Department, Massachusetts General Hospital; flow cytometry core facility of Ragon Institute, Massachusetts General Hospital; and Nikon Imaging Center, Harvard Medical School for technical help and equipments. This work was supported by American Cancer Society (KS), NIH grants CA138922, NS071197 (KS), CA139980 (PKS) and the James McDonnell Foundation (KS). There are no competing financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Shah.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagci-Onder, T., Agarwal, A., Flusberg, D. et al. Real-time imaging of the dynamics of death receptors and therapeutics that overcome TRAIL resistance in tumors. Oncogene 32, 2818–2827 (2013). https://doi.org/10.1038/onc.2012.304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.304

Keywords

This article is cited by

Search

Quick links