Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Junctional adhesion molecule-A is co-expressed with HER2 in breast tumors and acts as a novel regulator of HER2 protein degradation and signaling

Abstract

Junctional adhesion molecule-A (JAM-A) is a membranous cell–cell adhesion protein involved in tight-junction formation in epithelial and endothelial cells. Its overexpression in breast tumors has recently been linked with increased risk of metastasis. We sought to identify if JAM-A overexpression was associated with specific subtypes of breast cancer as defined by the expression of human epidermal growth factor receptor-2 (HER2), estrogen receptor (ER) and progesterone receptor. To this end, JAM-A immunohistochemistry was performed in two breast cancer tissue microarrays. In parallel, cross-talk between JAM-A, HER2 and ER was examined in several breast cell lines, using complementary genetic and pharmacological approaches. High JAM-A expression correlated significantly with HER2 protein expression, ER negativity, lower patient age, high-grade breast cancers, and aggressive luminal B, HER2 and basal subtypes of breast cancer. JAM-A and HER2 were co-expressed at high levels in vitro in SKBR3, UACC-812, UACC-893 and MCF7-HER2 cells. Knockdown or functional antagonism of HER2 did not alter JAM-A expression in any cell line tested. Interestingly, however, JAM-A knockdown decreased HER2 and ER-α expression, resulting in reduced levels of phospho-(active) AKT without an effect on the extracellular signal-related kinase phosphorylation. The downstream effects of JAM-A knockdown on HER2 and phospho-AKT were partially reversed upon treatment with the proteasomal inhibitor MG132. We conclude that JAM-A is co-expressed with HER2 and associates with aggressive breast cancer phenotypes. Furthermore, we speculate that JAM-A may regulate HER2 proteasomal degradation and activity, potentially offering a promise as a therapeutic target in HER2-positive breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

HER2:

human epidermal growth factor receptor-2

JAM-A:

junctional adhesion molecule-A.

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM . GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet]. International Agency for Research on Cancer, Lyon, France, 2010, (Available from http://globocan.iarc.fr accessed on 4 September 2011).

    Google Scholar 

  2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    CAS  PubMed  Google Scholar 

  5. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 2006; 295: 2492–2502.

    Article  CAS  PubMed  Google Scholar 

  6. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    Article  CAS  PubMed  Google Scholar 

  7. Baselga J, Swain SM . Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 2009; 9: 463–475.

    Article  CAS  PubMed  Google Scholar 

  8. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006; 355: 2733–2743.

    Article  CAS  PubMed  Google Scholar 

  9. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353: 1659–1672.

    Article  CAS  PubMed  Google Scholar 

  10. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, Davidson NE et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353: 1673–1684.

    Article  CAS  PubMed  Google Scholar 

  11. Osanai M, Murata M, Nishikiori N, Chiba H, Kojima T, Sawada N . Occludin-mediated premature senescence is a fail-safe mechanism against tumorigenesis in breast carcinoma cells. Cancer Sci 2007; 98: 1027–1034.

    Article  CAS  PubMed  Google Scholar 

  12. Hoevel T, Macek R, Swisshelm K, Kubbies M . Reexpression of the TJ protein CLDN1 induces apoptosis in breast tumor spheroids. Int J Cancer 2004; 108: 374–383.

    Article  CAS  PubMed  Google Scholar 

  13. Osanai M, Murata M, Chiba H, Kojima T, Sawada N . Epigenetic silencing of claudin-6 promotes anchorage-independent growth of breast carcinoma cells. Cancer Sci 2007; 98: 1557–1562.

    Article  CAS  PubMed  Google Scholar 

  14. Lanigan F, McKiernan E, Brennan DJ, Hegarty S, Millikan RC, McBryan J et al. Increased claudin-4 expression is associated with poor prognosis and high tumour grade in breast cancer. Int J Cancer 2009; 124: 2088–2097.

    Article  CAS  PubMed  Google Scholar 

  15. Hewitt KJ, Agarwal R, Morin PJ . The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 2006; 6: 186.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martin TA, Watkins G, Jiang WG . The Coxsackie-adenovirus receptor has elevated expression in human breast cancer. Clin Exp Med 2005; 5: 122–128.

    Article  CAS  PubMed  Google Scholar 

  17. McSherry EA, McGee SF, Jirstrom K, Doyle EM, Brennan DJ, Landberg G et al. JAM-A expression positively correlates with poor prognosis in breast cancer patients. Int J Cancer 2009; 125: 1343–1351.

    Article  CAS  PubMed  Google Scholar 

  18. Nelson WJ . Adaptation of core mechanisms to generate cell polarity. Nature 2003; 422: 766–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liang TW, DeMarco RA, Mrsny RJ, Gurney A, Gray A, Hooley J et al. Characterization of huJAM: evidence for involvement in cell-cell contact and tight junction regulation. Am J Physiol Cell Physiol 2000; 279: C1733–C1743.

    Article  CAS  PubMed  Google Scholar 

  20. Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu Brickwedde MK, Ohno S et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 2001; 20: 3738–3748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mandell KJ, Babbin BA, Nusrat A, Parkos CA . Junctional adhesion molecule 1 regulates epithelial cell morphology through effects on beta1 integrins and Rap1 activity. J Biol Chem 2005; 280: 11665–11674.

    Article  CAS  PubMed  Google Scholar 

  22. Cooke VG, Naik MU, Naik UP . Fibroblast growth factor-2 failed to induce angiogenesis in junctional adhesion molecule-A-deficient mice. Arterioscler Thromb Vasc Biol 2006; 26: 2005–2011.

    Article  CAS  PubMed  Google Scholar 

  23. Babinska A, Kedees MH, Athar H, Sobocki T, Sobocka MB, Ahmed T et al. Two regions of the human platelet F11-receptor (F11R) are critical for platelet aggregation, potentiation and adhesion. Thromb Haemost 2002; 87: 712–721.

    Article  CAS  PubMed  Google Scholar 

  24. Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C . JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 2002; 3: 151–158.

    Article  CAS  PubMed  Google Scholar 

  25. Naik MU, Naik TU, Suckow AT, Duncan MK, Naik UP . Attenuation of junctional adhesion molecule-A is a contributing factor for breast cancer cell invasion. Cancer Res 2008; 68: 2194–2203.

    Article  CAS  PubMed  Google Scholar 

  26. Murakami M, Giampietro C, Giannotta M, Corada M, Torselli I, Orsenigo F et al. Abrogation of junctional adhesion molecule-A expression induces cell apoptosis and reduces breast cancer progression. PLoS One 2011; 6: e21242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gotte M, Mohr C, Koo CY, Stock C, Vaske AK, Viola M et al. miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 2010; 29: 6569–6580.

    Article  CAS  PubMed  Google Scholar 

  28. McSherry EA, Brennan K, Hudson L, Hill AD, Hopkins AM . Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase. Breast Cancer Res 2011; 13: R31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gyorffy B LA, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z . An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res Treatment 2010; 123: 725–731.

    Article  Google Scholar 

  30. Pegram MD, Finn RS, Arzoo K, Beryt M, Pietras RJ, Slamon DJ . The effect of HER-2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells. Oncogene 1997; 15: 537–547.

    Article  CAS  PubMed  Google Scholar 

  31. Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 2009; 28: 803–814.

    Article  CAS  PubMed  Google Scholar 

  32. Chakraborty AK, Liang K, DiGiovanna MP . Co-targeting insulin-like growth factor I receptor and HER2: dramatic effects of HER2 inhibitors on nonoverexpressing breast cancer. Cancer Res 2008; 68: 1538–1545.

    Article  CAS  PubMed  Google Scholar 

  33. Bazzoni G, Tonetti P, Manzi L, Cera MR, Balconi G, Dejana E . Expression of junctional adhesion molecule-A prevents spontaneous and random motility. J Cell Sci 2005; 118 (Pt 3): 623–632.

    Article  CAS  PubMed  Google Scholar 

  34. Severson EA, Lee WY, Capaldo CT, Nusrat A, Parkos CA . Junctional adhesion molecule A interacts with Afadin and PDZ-GEF2 to activate Rap1A, regulate beta1 integrin levels, and enhance cell migration. Mol Biol Cell 2009; 20: 1916–1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jang JY, Jeon YK, Kim CW . Degradation of HER2/neu by ANT2 shRNA suppresses migration and invasiveness of breast cancer cells. BMC Cancer 2010; 10: 391.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zimmermann S, Moelling K . Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 1999; 286: 1741–1744.

    Article  CAS  PubMed  Google Scholar 

  37. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  38. Clark AS, West K, Streicher S, Dennis PA . Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 2002; 1: 707–717.

    CAS  PubMed  Google Scholar 

  39. Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS et al. Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J. 2001; 15: 1953–1962.

    Article  CAS  PubMed  Google Scholar 

  40. Braniste V, Leveque M, Buisson-Brenac C, Bueno L, Fioramonti J, Houdeau E . Oestradiol decreases colonic permeability through oestrogen receptor beta-mediated up-regulation of occludin and junctional adhesion molecule-A in epithelial cells. J Physiol 2009; 587 (Pt 13): 3317–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for funding from Science Foundation Ireland (2008/RFP/NSC1427 to AMH), to Dr Tony O'Grady and Trudi Roche for their assistance with obtaining tissue microarray clinical data, and to Dr Marie McIlroy for statistical advice. Herceptin was a kind gift from the St James' Hospital Pharmacy, Dublin, Ireland; LCC1 cells were a kind gift from Professor Robert Clarke, Georgetown University, USA; and MCF7-HER2 cells were a kind gift from Professor Dennis Slamon, University College Los Angeles, USA and Dr Norma O'Donovan, Dublin City University, Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Hopkins.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brennan, K., McSherry, E., Hudson, L. et al. Junctional adhesion molecule-A is co-expressed with HER2 in breast tumors and acts as a novel regulator of HER2 protein degradation and signaling. Oncogene 32, 2799–2804 (2013). https://doi.org/10.1038/onc.2012.276

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.276

Keywords

This article is cited by

Search

Quick links