Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ZRF1 controls oncogene-induced senescence through the INK4-ARF locus

Abstract

The reactivation of the INK4-ARF locus, which is epigenetically repressed by Polycomb proteins in healthy cells, is a hallmark of senescence. One mechanism of reactivating Polycomb-silenced genes is mediated by the epigenetic factor ZRF1, which associates with ubiquitinated histone H2A. We show that cells undergoing senescence following oncogenic Ras expression have increased ZRF1 levels, and that this binds to the p15INK4b, ARF and p16INK4a promoters. Furthermore, ZRF1 depletion in oncogenic Ras-expressing cells restores proliferation by preventing Arf and p16Ink4a expression, consequently bypassing senescence. Thus, ZRF1 regulates the INK4-ARF locus during cellular proliferation and senescence, and alterations in ZRF1 may contribute to tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kim WY, Sharpless NE . The regulation of INK4/ARF in cancer and aging. Cell 2006; 127: 265–275.

    Article  CAS  PubMed  Google Scholar 

  2. Lowe SW, Sherr CJ . Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 2003; 13: 77–83.

    Article  CAS  PubMed  Google Scholar 

  3. Collado M, Serrano M . The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 2006; 6: 472–476.

    Article  CAS  PubMed  Google Scholar 

  4. Krimpenfort P, Ijpenberg A, Song JY, van der Valk M, Nawijn M, Zevenhoven J et al. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 2007; 448: 943–946.

    Article  CAS  PubMed  Google Scholar 

  5. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS . The essence of senescence. Genes Dev 2010; 24: 2463–2479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adams PD . Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 2009; 36: 2–14.

    Article  CAS  PubMed  Google Scholar 

  7. Collado M, Serrano M . Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 2010; 10: 51–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gil J, Peters G . Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 2006; 7: 667–677.

    Article  CAS  PubMed  Google Scholar 

  9. Cruickshanks HA, Adams PD . Chromatin: a molecular interface between cancer and aging. Curr Opin Genet Dev 2011; 21: 100–106.

    Article  CAS  PubMed  Google Scholar 

  10. Maertens GN, El Messaoudi-Aubert S, Racek T, Stock JK, Nicholls J, Rodriguez-Niedenfuhr M et al. Several distinct polycomb complexes regulate and co-localize on the INK4a tumor suppressor locus. PLoS One 2009; 4: e6380.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kia SK, Gorski MM, Giannakopoulos S, Verrijzer CP . SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol Cell Biol 2008; 28: 3457–3464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gil J, Bernard D, Martinez D, Beach D . Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol 2004; 6: 67–72.

    Article  CAS  PubMed  Google Scholar 

  13. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 2007; 21: 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dietrich N, Bracken AP, Trinh E, Schjerling CK, Koseki H, Rappsilber J et al. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO J 2007; 26: 1637–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 2009; 23: 1171–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenfuhr M et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 2009; 23: 1177–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kotake Y, Zeng Y, Xiong Y . DDB1-CUL4 and MLL1 mediate oncogene-induced p16INK4a activation. Cancer Res 2009; 69: 1809–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simboeck E, Ribeiro JD, Teichmann S, Di Croce L . Epigenetics and senescence: Learning from the INK4-ARF locus. Biochem Pharmacol 2011; 82: 1361–1370.

    Article  CAS  PubMed  Google Scholar 

  19. Richly H, Rocha-Viegas L, Ribeiro JD, Demajo S, Gundem G, Lopez-Bigas N et al. Transcriptional activation of polycomb-repressed genes by ZRF1. Nature 2010; 468: 1124–1128.

    Article  CAS  PubMed  Google Scholar 

  20. Richly H, Di Croce L . The flip side of the coin: role of ZRF1 and histone H2A ubiquitination in transcriptional activation. Cell Cycle 2011; 10: 745–750.

    Article  CAS  PubMed  Google Scholar 

  21. Andrews PW . Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 1984; 103: 285–293.

    Article  CAS  PubMed  Google Scholar 

  22. Lois AF, Cooper LT, Geng Y, Nobori T, Carson D . Expression of the p16 and p15 cyclin-dependent kinase inhibitors in lymphocyte activation and neuronal differentiation. Cancer Res 55: 4010–4013 1995.

    CAS  PubMed  Google Scholar 

  23. Thullberg M, Bartkova J, Khan S, Hansen K, Ronnstrand L, Lukas J et al. Distinct versus redundant properties among members of the INK4 family of cyclin-dependent kinase inhibitors. FEBS Lett 2000; 470: 161–166.

    Article  CAS  PubMed  Google Scholar 

  24. Freemantle SJ, Kerley JS, Olsen SL, Gross RH, Spinella MJ . Developmentally-related candidate retinoic acid target genes regulated early during neuronal differentiation of human embryonal carcinoma. Oncogene 2002; 21: 2880–2889.

    Article  CAS  PubMed  Google Scholar 

  25. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  26. Zindy F, Quelle DE, Roussel MF, Sherr CJ . Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 1997; 15: 203–211.

    Article  CAS  PubMed  Google Scholar 

  27. Malumbres M, Perez De Castro I, Hernandez MI, Jimenez M, Corral T, Pellicer A . Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol Cell Biol 2000; 20: 2915–2925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shoji W, Inoue T, Yamamoto T, Obinata M . MIDA1, a protein associated with Id, regulates cell growth. J Biol Chem 1995; 270: 24818–24825.

    Article  CAS  PubMed  Google Scholar 

  29. Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW . PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 2000; 14: 2015–2027.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McConnell BB, Starborg M, Brookes S, Peters G . Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr Biol 1998; 8: 351–354.

    Article  CAS  PubMed  Google Scholar 

  31. Lazarov M, Kubo Y, Cai U, Dajee M, Tarutani M, Lin Q et al. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis. Nature Medicine 2002; 8: 1105–1114.

    Article  CAS  PubMed  Google Scholar 

  32. Kemp CJ . Multistep skin cancer in mice as a model to study the evolution of cancer cells. Semin Cancer Biol 2005; 15: 460–473.

    Article  CAS  PubMed  Google Scholar 

  33. Maertens GN, El Messaoudi-Aubert S, Elderkin S, Hiom K, Peters G . Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor. EMBO J 2010; 29: 2553–2565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matsumoto-Taniura N, Pirollet F, Monroe R, Gerace L, Westendorf JM . Identification of novel M phase phosphoproteins by expression cloning. Mol Biol Cell 1996; 7: 1455–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smith JC, Duchesne MA, Tozzi P, Ethier M, Figeys D . A differential phosphoproteomic analysis of retinoic acid-treated P19 cells. J Proteome Res 2007; 6: 3174–3186.

    Article  CAS  PubMed  Google Scholar 

  36. Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY . Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev 2007; 21: 3244–3257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Resto VA, Caballero OL, Buta MR, Westra WH, Wu L, Westendorf JM et al. A putative oncogenic role for MPP11 in head and neck squamous cell cancer. Cancer Res 2000; 60: 5529–5535.

    CAS  PubMed  Google Scholar 

  38. Keyes WM, Wu Y, Vogel H, Guo X, Lowe SW, Mills AA . p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 2005; 19: 1986–1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gandarillas A, Watt FM . c-Myc promotes differentiation of human epidermal stem cells. Genes Dev 1997; 11: 2869–2882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank VA Raker for help in preparing the manuscript, and to the CRG Genomic Unit. This work was supported by grants from the Spanish ‘Ministerio de Educación y Ciencia’ (CONSOLIDER and BFU2010-18692), from the European Commission FP7 project 4DCellFate (277899), and from AICR (10-0177) to LDC. JDR was supported by grant SFRH/BD/15908/2005 from Foundation for Science and Technology (FCT) Portugal and is a fellow of the Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Oporto, Portugal; LM was supported by a post-doctoral CRG-Novartis fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Di Croce.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, J., Morey, L., Mas, A. et al. ZRF1 controls oncogene-induced senescence through the INK4-ARF locus. Oncogene 32, 2161–2168 (2013). https://doi.org/10.1038/onc.2012.241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.241

Keywords

This article is cited by

Search

Quick links