Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

P-cadherin is a direct PAX3–FOXO1A target involved in alveolar rhabdomyosarcoma aggressiveness

Abstract

Alveolar rhabdomyosarcoma (ARMS) is an aggressive childhood cancer of striated muscle characterized by the presence of the PAX3–FOXO1A or PAX7–FOXO1A chimeric oncogenic transcription factor. Identification of their targets is essential for understanding ARMS pathogenesis. To this aim, we analyzed transcriptomic data from rhabdomyosarcoma samples and found that P-cadherin expression is correlated with PAX3/7–FOXO1A presence. We then show that expression of a PAX3 dominant negative variant inhibits P-cadherin expression in ARMS cells. Using mouse models carrying modified Pax3 alleles, we demonstrate that P-cadherin is expressed in the dermomyotome and lies genetically downstream from the myogenic factor Pax3. Moreover, in vitro gel shift analysis and chromatin immunoprecipitation indicate that the P-cadherin gene is a direct transcriptional target for PAX3/7–FOXO1A. Finally, P-cadherin expression in normal myoblasts inhibits myogenesis and induces myoblast transformation, migration and invasion. Conversely, P-cadherin downregulation by small hairpin RNA decreases the transformation, migration and invasive potential of ARMS cells. P-cadherin also favors cadherin switching, which is a hallmark of metastatic progression, by controlling N- and M-cadherin expression and/or localization. Our findings demonstrate that P-cadherin is a direct PAX3–FOXO1A transcriptional target involved in ARMS aggressiveness. Therefore, P-cadherin emerges as a new and attractive target for therapeutic intervention in ARMS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Merlino G, Helman LJ . Rhabdomyosarcoma—working out the pathways. Oncogene 1999; 18: 5340–5348.

    Article  CAS  Google Scholar 

  2. Barr FG . Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 2001; 20: 5736–5746.

    Article  CAS  Google Scholar 

  3. Wachtel M, Dettling M, Koscielniak E, Stegmaier S, Treuner J, Simon-Klingenstein K et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004; 64: 5539–5545.

    Article  CAS  Google Scholar 

  4. Fredericks WJ, Galili N, Mukhopadhyay S, Rovera G, Bennicelli J, Barr FG et al. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 1995; 15: 1522–1535.

    Article  CAS  Google Scholar 

  5. Relaix F, Polimeni M, Rocancourt D, Ponzetto C, Schafer BW, Buckingham M . The transcriptional activator PAX3-FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo. Genes Dev 2003; 17: 2950–2965.

    Article  CAS  Google Scholar 

  6. Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR . Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004; 18: 2614–2626.

    Article  CAS  Google Scholar 

  7. Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol 2002; 20: 2672–2679.

    Article  CAS  Google Scholar 

  8. Christofori G . Changing neighbours, changing behaviour: cell adhesion molecule-mediated signalling during tumour progression. EMBO J. 2003; 22: 2318–2323.

    Article  CAS  Google Scholar 

  9. Cavallaro U, Schaffhauser B, Christofori G . Cadherins and the tumour progression: is it all in a switch? Cancer Lett 2002; 176: 123–128.

    Article  CAS  Google Scholar 

  10. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  Google Scholar 

  11. Charrasse S, Comunale F, Gilbert E, Delattre O, Gauthier-Rouviere C . Variation in cadherins and catenins expression is linked to both proliferation and transformation of Rhabdomyosarcoma. Oncogene 2004; 23: 2420–2430.

    Article  CAS  Google Scholar 

  12. Kucharczak J, Charrasse S, Comunale F, Zappulla J, Robert B, Teulon-Navarro I et al. R-Cadherin expression inhibits myogenesis and induces myoblast transformation via Rac1 GTPase. Cancer Res 2008; 68: 6559–6568.

    Article  CAS  Google Scholar 

  13. Williamson D, Missiaglia E, de Reynies A, Pierron G, Thuille B, Palenzuela G et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol 2010; 28: 2151–2158.

    Article  Google Scholar 

  14. Davicioni E, Finckenstein FG, Shahbazian V, Buckley JD, Triche TJ, Anderson MJ . Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 2006; 66: 6936–6946.

    Article  CAS  Google Scholar 

  15. Lae M, Ahn EH, Mercado GE, Chuai S, Edgar M, Pawel BR et al. Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol 2007; 212: 143–151.

    Article  CAS  Google Scholar 

  16. Collins CA, Gnocchi VF, White RB, Boldrin L, Perez-Ruiz A, Relaix F et al. Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation. PLoS One 2009; 4: e4475.

    Article  Google Scholar 

  17. Buckingham M, Relaix F . The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 2007; 23: 645–673.

    Article  CAS  Google Scholar 

  18. Kjaer KW, Hansen L, Schwabe GC, Marques-de-Faria AP, Eiberg H, Mundlos S et al. Distinct CDH3 mutations cause ectodermal dysplasia, ectrodactyly, macular dystrophy (EEM syndrome). J Med Genet 2005; 42: 292–298.

    Article  CAS  Google Scholar 

  19. Hayashi S, Rocancourt D, Buckingham M, Relaix F . Lack of In Vivo Functional Compensation Between Pax Family Groups II and III in Rodents. Mol Biol Evol 2011; 28: 2787–2798.

    Article  CAS  Google Scholar 

  20. Bajard L, Relaix F, Lagha M, Rocancourt D, Daubas P, Buckingham ME . A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev 2006; 20: 2450–2464.

    Article  CAS  Google Scholar 

  21. Cao L, Yu Y, Bilke S, Walker RL, Mayeenuddin LH, Azorsa DO et al. Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res 2010; 70: 6497–6508.

    Article  CAS  Google Scholar 

  22. Tarnowski M, Grymula K, Reca R, Jankowski K, Maksym R, Tarnowska J et al. Regulation of expression of stromal-derived factor-1 receptors: CXCR4 and CXCR7 in human rhabdomyosarcomas. Mol Cancer Res 2010; 8: 1–14.

    Article  CAS  Google Scholar 

  23. Rao SS, Kohtz DS . Positive and negative regulation of D-type cyclin expression in skeletal myoblasts by basic fibroblast growth factor and transforming growth factor beta. A role for cyclin D1 in control of myoblast differentiation. J Biol Chem 1995; 270: 4093–4100.

    Article  CAS  Google Scholar 

  24. Wiercinska E, Naber HP, Pardali E, van der Pluijm G, van Dam H, Ten Dijke P . The TGF-beta/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Res Treat 2010; 128: 657–666.

    Article  Google Scholar 

  25. Robson EJ, He SJ, Eccles MRA . PANorama of PAX genes in cancer and development. Nat Rev Cancer 2006; 6: 52–62.

    Article  CAS  Google Scholar 

  26. Wachtel M, Runge T, Leuschner I, Stegmaier S, Koscielniak E, Treuner J et al. Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J Clin Oncol 2006; 24: 816–822.

    Article  CAS  Google Scholar 

  27. Grass B, Wachtel M, Behnke S, Leuschner I, Niggli FK, Schafer BW . Immunohistochemical detection of EGFR, fibrillin-2, P-cadherin and AP2beta as biomarkers for rhabdomyosarcoma diagnostics. Histopathology 2009; 54: 873–879.

    Article  Google Scholar 

  28. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 2006; 172: 91–102.

    Article  CAS  Google Scholar 

  29. Cheung LW, Leung PC, Wong AS . Cadherin switching and activation of p120 catenin signaling are mediators of gonadotropin-releasing hormone to promote tumor cell migration and invasion in ovarian cancer. Oncogene 2010; 29: 2427–2440.

    Article  CAS  Google Scholar 

  30. Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yokomine K et al. Identification of a novel tumor-associated antigen, cadherin 3/P-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clin Cancer Res 2008; 14: 6487–6495.

    Article  CAS  Google Scholar 

  31. Paredes J, Albergaria A, Oliveira JT, Jeronimo C, Milanezi F, Schmitt FC et al. P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res 2005; 11: 5869–5877.

    Article  CAS  Google Scholar 

  32. Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR . Cadherin switching. J Cell Sci. 2008; 121: 727–735.

    Article  CAS  Google Scholar 

  33. Puskulluoglu M, Lukasiewicz E, Miekus K, Jarocha D, Majka M . Differential expression of Snail1 transcription factor and Snail1-related genes in alveolar and embryonal rhabdomyosarcoma subtypes. Folia Histochem Cytobiol 2010; 48: 671–677.

    PubMed  Google Scholar 

  34. Ben-Yair R, Kalcheim C . Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 2005; 132: 689–701.

    Article  CAS  Google Scholar 

  35. Manceau M, Gros J, Savage K, Thome V, McPherron A, Paterson B et al. Myostatin promotes the terminal differentiation of embryonic muscle progenitors. Genes Dev 2008; 22: 668–681.

    Article  CAS  Google Scholar 

  36. Zhang CC, Yan Z, Zhang Q, Kuszpit K, Zasadny K, Qiu M et al. PF-03732010: a fully human monoclonal antibody against P-cadherin with antitumor and antimetastatic activity. Clin Cancer Res 2010; 16: 5177–5188.

    Article  CAS  Google Scholar 

  37. Park J, Park E, Han SW, Im SA, Kim TY, Kim WH et al. Down-regulation of P-cadherin with PF-03732010 inhibits cell migration and tumor growth in gastric cancer. Invest New Drugs 2011; 11: 9710–9719.

    Google Scholar 

  38. Bach AS, Enjalbert S, Comunale F, Bodin S, Vitale N, Charrasse S et al. ADP-ribosylation factor 6 regulates mammalian myoblast fusion through phospholipase D1 and phosphatidylinositol 4,5-bisphosphate signaling pathways. Mol Biol Cell 2010; 21: 2412–2424.

    Article  CAS  Google Scholar 

  39. Fortier M, Comunale F, Kucharczak J, Blangy A, Charrasse S, Gauthier-Rouviere C . RhoE controls myoblast alignment prior fusion through RhoA and ROCK. Cell Death Differ 2008; 15: 1221–1231.

    Article  CAS  Google Scholar 

  40. Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M . Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 1997; 89: 127–138.

    Article  CAS  Google Scholar 

  41. Nose A, Nagafuchi A, Takeichi M . Isolation of placental cadherin cDNA: identification of a novel gene family of cell-cell adhesion molecules. EMBO J 1987; 6: 3655–3661.

    Article  CAS  Google Scholar 

  42. McKinnell IW, Ishibashi J, Le Grand F, Punch VG, Addicks GC, Greenblatt JF et al. Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol 2008; 10: 77–84.

    Article  CAS  Google Scholar 

  43. Charrasse S, Meriane M, Comunale F, Blangy A, Gauthier-Rouviere C . N-cadherin-dependent cell-cell contact regulates Rho GTPases and beta-catenin localization in mouse C2C12 myoblasts. J Cell Biol 2002; 158: 953–965.

    Article  CAS  Google Scholar 

  44. Meriane M, Roux P, Primig M, Fort P, Gauthier-Rouviere C . Critical activities of Rac1 and Cdc42Hs in skeletal myogenesis: antagonistic effects of JNK and p38 pathways. Mol Biol Cell 2000; 11: 2513–2528.

    Article  CAS  Google Scholar 

  45. Gadea G, de Toledo M, Anguille C, Roux P . Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol 2007; 178: 23–30.

    Article  CAS  Google Scholar 

  46. Epstein JA, Shapiro DN, Cheng J, Lam PY, Maas RL . Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 1996; 93: 4213–4218.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Vincent Mouly for the LHCN-M2 myoblasts, Setsuo Hirohashi and Keith Johnson for the P-cadherin cDNA, Mickael Rudnicki for the pBRIT plasmid, Pete Zammit for the pMSCV-Pax3-En-IRES-eGFP plasmids. We thank the Montpellier Imaging Facility (http://www.mri.cnrs.fr/) and Lionel Larue, Sophie Charrasse and Stéphane Bodin for discussion. This work was supported by the « Cartes d’Identite des Tumeurs » program (http://cit.ligue-cancer.net/) of the Ligue Nationale contre le Cancer, the Ligue Nationale contre le Cancer (LNCC) (« Equipe labellisée») and the Institut National du Cancer (INCa). CGR was supported by INSERM, ST by INCa and JLC by the Association pour la Recherche contre le Cancer (ARC). FR’s team is supported by the INSERM Avenir Program, Association Française Contre les Myopathies, LNCC, ARC, Fondation pour la Recherche Médicale, INCa and from the European Union Seventh Framework Programme, project ENDOSTEM (number 241440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Gauthier-Rouvière.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thuault, S., Hayashi, S., Lagirand-Cantaloube, J. et al. P-cadherin is a direct PAX3–FOXO1A target involved in alveolar rhabdomyosarcoma aggressiveness. Oncogene 32, 1876–1887 (2013). https://doi.org/10.1038/onc.2012.217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.217

Keywords

Search

Quick links