Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tetraspanin CD151 plays a key role in skin squamous cell carcinoma

Abstract

Here we provide the first evidence that tetraspanin CD151 can support de novo carcinogenesis. During two-stage mouse skin chemical carcinogenesis, CD151 reduces tumor lag time and increases incidence, multiplicity, size and progression to malignant squamous cell carcinoma (SCC), while supporting both cell survival during tumor initiation and cell proliferation during the promotion phase. In human skin SCC, CD151 expression is selectively elevated compared with other skin cancer types. CD151 support of keratinocyte survival and proliferation may depend on activation of transcription factor STAT3 (signal transducers and activators of transcription), a regulator of cell proliferation and apoptosis. CD151 also supports protein kinase C (PKC)α–α6β4 integrin association and PKC-dependent β4 S1424 phosphorylation, while regulating α6β4 distribution. CD151–PKCα effects on integrin β4 phosphorylation and subcellular localization are consistent with epithelial disruption to a less polarized, more invasive state. CD151 ablation, while minimally affecting normal cell and normal mouse functions, markedly sensitized mouse skin and epidermoid cells to chemicals/drugs including 7,12-dimethylbenz[α]anthracene (mutagen) and camptothecin (topoisomerase inhibitor), as well as to agents targeting epidermal growth factor receptor, PKC, Jak2/Tyk2 and STAT3. Hence, CD151 ‘co-targeting’ may be therapeutically beneficial. These findings not only support CD151 as a potential tumor target, but also should apply to other cancers utilizing CD151/laminin-binding integrin complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Sincock PM, Mayrohofer G, Ashman LK . Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues—comparison with CD9, CD63, and α5β1 integrin. J Histochem Cytochem 1997; 45: 515–525.

    Article  CAS  Google Scholar 

  2. Berditchevski F, Odintsova E . Characterization of integrin-tetraspanin adhesion complexes: role of tetraspanins in integrin signaling. J Cell Biol 1999; 146: 477–492.

    Article  CAS  Google Scholar 

  3. Fitter S, Sincock PM, Jolliffe CN, Ashman LK . Transmembrane 4 superfamily protein CD151 (PETA-3) associates with beta 1 and alpha IIb beta 3 integrins in haemopoietic cell lines and modulates cell-cell adhesion. Biochem J 1999; 338(Part 1): 61–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kazarov AR, Yang X, Stipp CS, Sehgal B, Hemler ME . An extracellular site on tetraspanin CD151 determines α3 and α6 integrin-dependent cellular morphology. J Cell Biol 2002; 158: 1299–1309.

    Article  CAS  Google Scholar 

  5. Serru V, Naour FL, Billard M, Azorsa DO, Lanza F, Boucheix C et al. Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions. Biochem J 1999; 340 (Part 1): 103–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sincock PM, Fitter S, Parton RG, Berndt MC, Gamble JR, Ashman LK . PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci 1999; 112: 833–844.

    CAS  PubMed  Google Scholar 

  7. Sterk LM, Geuijen CA, Oomen LC, Calafat J, Janssen H, Sonnenberg A . The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol 2000; 149: 969–982.

    Article  CAS  Google Scholar 

  8. Sterk LM, Geuijen CA, van Den Berg JG, Claessen N, Weening JJ, Sonnenberg A . Association of the tetraspanin CD151 with the laminin-binding integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 in cells in culture and in vivo. J Cell Sci 2002; 115: 1161–1173.

    CAS  PubMed  Google Scholar 

  9. Stipp CS . Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev Mol Med 2010; 12: e3.

    Article  Google Scholar 

  10. Yánez-Mó M, Alfranca A, Cabañas C, Marazuela M, Tejedor R, Ursa MA et al. Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with α3β1 integrin localized at endothelial lateral junctions. J Cell Biol 1998; 141: 791–804.

    Article  Google Scholar 

  11. Yauch RL, Berditchevski F, Harler MB, Reichner J, Hemler ME . Highly stoichiometric, stable and specific association of integrin α3β1 with CD151 provides a major link to phosphatidylinositol 4-kinase and may regulate cell migration. Mol Biol Cell 1998; 9: 2751–2765.

    Article  CAS  Google Scholar 

  12. Yauch RL, Kazarov AR, Desai B, Lee RT, Hemler ME . Direct extracellular contact between integrin α3β1 and TM4SF protein CD151. J Biol Chem 2000; 275: 9230–9238.

    Article  CAS  Google Scholar 

  13. Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KC et al. Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol 2004; 24: 5978–5988.

    Article  CAS  Google Scholar 

  14. Baleato RM, Guthrie PL, Gubler MC, Ashman LK, Roselli S . Deletion of CD151 results in a strain-dependent glomerular disease due to severe alterations of the glomerular basement membrane. Am J Pathol 2008; 173: 927–937.

    Article  CAS  Google Scholar 

  15. Cowin AJ, Adams D, Geary SM, Wright MD, Jones JC, Ashman LK . Wound Healing Is Defective in Mice Lacking Tetraspanin CD151. J Invest Dermatol 2006; 126: 680–689.

    Article  CAS  Google Scholar 

  16. Karamatic CV, Burton N, Kagan A, Green CA, Levene C, Flinter F et al. CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 2004; 104: 2217–2223.

    Article  Google Scholar 

  17. Sachs N, Kreft M, van den Bergh Weerman MA, Beynon AJ, Peters TA, Weening JJ et al. Kidney failure in mice lacking the tetraspanin CD151. J Cell Biol 2006; 175: 33–39.

    Article  CAS  Google Scholar 

  18. Belkin AM, Stepp MA . Integrins as receptors for laminins. Microsc Res Tech 2000; 51: 280–301.

    Article  CAS  Google Scholar 

  19. Yang XH, Mirchev R, Deng X, Yang HL, Golan DE, Hemler ME . CD151 restricts α6 integrin diffusion mode. J Cell Sci 2012; 125: 1478–1487.

    Article  CAS  Google Scholar 

  20. Baldwin G, Novitskaya V, Sadej R, Pochec E, Litynska A, Hartmann C et al. Tetraspanin CD151 regulates glycosylation of alpha3beta1 integrin. J Biol Chem 2008; 283: 35445–35454.

    Article  CAS  Google Scholar 

  21. Winterwood NE, Varzavand A, Meland MN, Ashman LK, Stipp CS . A Critical Role for Tetraspanin CD151 in {alpha}3{beta}1 and {alpha}6{beta}4 Integrin-dependent Tumor Cell Functions on Laminin-5. Mol Biol Cell 2006; 17: 2707–2721.

    Article  CAS  Google Scholar 

  22. Charrin S, Manie S, Billard M, Ashman L, Gerlier D, Boucheix C et al. Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun 2003; 304: 107–112.

    Article  CAS  Google Scholar 

  23. Zhang XA, Bontrager AL, Hemler ME . TM4SF proteins associate with activated PKC and Link PKC to specific beta1 integrins. J Biol Chem 2001; 276: 25005–25013.

    Article  CAS  Google Scholar 

  24. Hemler ME . Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 2005; 6: 801–811.

    Article  CAS  Google Scholar 

  25. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 2003; 421: 639–643.

    Article  CAS  Google Scholar 

  26. Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G et al. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 2006; 126: 489–502.

    Article  CAS  Google Scholar 

  27. Owens DM, Watt FM . Influence of beta1 integrins on epidermal squamous cell carcinoma formation in a transgenic mouse model: alpha3beta1, but not alpha2beta1, suppresses malignant conversion. Cancer Res 2001; 61: 5248–5254.

    CAS  PubMed  Google Scholar 

  28. Tran M, Rousselle P, Nokelainen P, Tallapragada S, Nguyen NT, Fincher EF et al. Targeting a tumor-specific laminin domain critical for human carcinogenesis. Cancer Res 2008; 68: 2885–2894.

    Article  CAS  Google Scholar 

  29. Raymond K, Kreft M, Song JY, Janssen H, Sonnenberg A . Dual Role of alpha6beta4 integrin in epidermal tumor growth: tumor-suppressive versus tumor-promoting function. Mol Biol Cell 2007; 18: 4210–4221.

    Article  CAS  Google Scholar 

  30. Bachelder RE, Ribick MJ, Marchetti A, Falcioni R, Soddu S, Davis KR et al. p53 inhibits alpha 6 beta 4 integrin survival signaling by promoting the caspase 3-dependent cleavage of AKT/PKB. J Cell Biol 1999; 147: 1063–1072.

    Article  CAS  Google Scholar 

  31. Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP . The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 2008; 13: 221–234.

    Article  CAS  Google Scholar 

  32. Sadej R, Romanska H, Baldwin G, Gkirtzimanaki K, Novitskaya V, Filer AD et al. CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol Cancer Res 2009; 7: 787–798.

    Article  CAS  Google Scholar 

  33. Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR et al. CD151 accelerates breast cancer by regulating α6 integrin functions, signaling, and molecular organization. Cancer Res 2008; 68: 3204–3213.

    Article  CAS  Google Scholar 

  34. Takeda Y, Kazarov AR, Butterfield CE, Hopkins BD, Benjamin LE, Kaipainen A et al. Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 2007; 109: 1524–1532.

    Article  CAS  Google Scholar 

  35. Yang XH, Flores LM, Li Q, Zhou P, Xu F, Krop IE et al. Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists. Cancer Res 2010; 70: 2256–2263.

    Article  CAS  Google Scholar 

  36. Abel EL, Angel JM, Kiguchi K, DiGiovanni J . Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc 2009; 4: 1350–1362.

    Article  CAS  Google Scholar 

  37. Kemp CJ . Multistep skin cancer in mice as a model to study the evolution of cancer cells. Semin Cancer Biol 2005; 15: 460–473.

    Article  CAS  Google Scholar 

  38. Alam M, Ratner D . Cutaneous squamous-cell carcinoma. N Engl J Med 2001; 344: 975–983.

    Article  CAS  Google Scholar 

  39. Weinberg AS, Ogle CA, Shim EK . Metastatic cutaneous squamous cell carcinoma: an update. Dermatol Surg 2007; 33: 885–899.

    CAS  PubMed  Google Scholar 

  40. Hennings H, Glick AB, Lowry DT, Krsmanovic LS, Sly LM, Yuspa SH . FVB/N mice: an inbred strain sensitive to the chemical induction of squamous cell carcinomas in the skin. Carcinogenesis 1993; 14: 2353–2358.

    Article  CAS  Google Scholar 

  41. Frank DA . STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett 2007; 251: 199–210.

    Article  CAS  Google Scholar 

  42. Chan KS, Sano S, Kataoka K, Abel E, Carbajal S, Beltran L et al. Forced expression of a constitutively active form of Stat3 in mouse epidermis enhances malignant progression of skin tumors induced by two-stage carcinogenesis. Oncogene 2008; 27: 1087–1094.

    Article  CAS  Google Scholar 

  43. Chan KS, Sano S, Kiguchi K, Anders J, Komazawa N, Takeda J et al. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J Clin Invest 2004; 114: 720–728.

    Article  CAS  Google Scholar 

  44. Madoux F, Koenig M, Sessions H, Nelson E, Mercer BA, Cameron M et al. Modulators of STAT Transcription Factors for the Targeted Therapy of Cancer (STAT3 Inhibitors) Probe Reports from the NIH Molecular Libraries Program [Internet] Bethesda (MD): National Center for Biotechnology Information (US) 2010.

  45. Nelson EA, Walker SR, Kepich A, Gashin LB, Hideshima T, Ikeda H et al. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood 2008; 112: 5095–5102.

    Article  CAS  Google Scholar 

  46. Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 2002; 21: 6255–6263.

    Article  CAS  Google Scholar 

  47. Franco M, Muratori C, Corso S, Tenaglia E, Bertotti A, Capparuccia L et al. The tetraspanin CD151 is required for Met-dependent signaling and tumor cell growth. J Biol Chem 2010; 285: 38756–38764.

    Article  CAS  Google Scholar 

  48. Syed ZA, Yin W, Hughes K, Gill JN, Shi R, Clifford JL . HGF/c-met/Stat3 signaling during skin tumor cell invasion: indications for a positive feedback loop. BMC Cancer 2011; 11: 180.

    Article  CAS  Google Scholar 

  49. Sattler M, Pride YB, Ma P, Gramlich JL, Chu SC, Quinnan LA et al. A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res 2003; 63: 5462–5469.

    CAS  PubMed  Google Scholar 

  50. Kashyap T, Germain E, Roche M, Lyle S, Rabinovitz I . Role of beta4 integrin phosphorylation in human invasive squamous cell carcinoma: regulation of hemidesmosome stability modulates cell migration. Lab Invest 2011; 91: 1414–1426.

    Article  CAS  Google Scholar 

  51. Tennenbaum T, Weiner AK, Belanger AJ, Glick AB, Hennings H, Yuspa SH . The suprabasal expression of alpha 6 beta 4 integrin is associated with a high risk for malignant progression in mouse skin carcinogenesis. Cancer Res 1993; 53: 4803–4810.

    CAS  PubMed  Google Scholar 

  52. Germain EC, Santos TM, Rabinovitz I . Phosphorylation of a novel site on the {beta}4 integrin at the trailing edge of migrating cells promotes hemidesmosome disassembly. Mol Biol Cell 2009; 20: 56–67.

    Article  CAS  Google Scholar 

  53. Wilhelmsen K, Litjens SH, Kuikman I, Margadant C, van Rheenen J, Sonnenberg A . Serine phosphorylation of the integrin beta4 subunit is necessary for epidermal growth factor receptor induced hemidesmosome disruption. Mol Biol Cell 2007; 18: 3512–3522.

    Article  CAS  Google Scholar 

  54. Frijns E, Sachs N, Kreft M, Wilhelmsen K, Sonnenberg A . EGF-induced MAPK signaling inhibits hemidesmosome formation through phosphorylation of the integrin {beta}4. J Biol Chem 2010; 285: 37650–37662.

    Article  CAS  Google Scholar 

  55. de Wit J, Souwer Y, van Beelen AJ, de Groot R, Muller FJ, Klaasse Bos H et al. CD5 costimulates for stable human Th17 development by promoting IL-23R expression and sustained STAT3 activation. Blood 2011; 118: 6107–6114.

    Article  CAS  Google Scholar 

  56. Grivennikov SI, Karin M . Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 2010; 21: 11–19.

    Article  CAS  Google Scholar 

  57. Hirano T, Ishihara K, Hibi M . Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000; 19: 2548–2556.

    Article  CAS  Google Scholar 

  58. Tokura Y, Mori T, Hino R . Psoriasis and other Th17-mediated skin diseases. J UOEH 2010; 32: 317–328.

    Article  CAS  Google Scholar 

  59. Torrero MN, Henk WG, Li S . Regression of high-grade malignancy in mice by bleomycin and interleukin-12 electrochemogenetherapy. Clin Cancer Res 2006; 12: 257–263.

    Article  CAS  Google Scholar 

  60. Schindler C, Darnell JE . Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 1995; 64: 621–651.

    Article  CAS  Google Scholar 

  61. Ang J, Lijovic M, Ashman LK, Kan K, Frauman AG . CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol Biomarkers Prev 2004; 13: 1717–1721.

    CAS  PubMed  Google Scholar 

  62. Romanska HM, Berditchevski F . Tetraspanins in human epithelial malignancies. J Pathol 2011; 223: 4–14.

    Article  CAS  Google Scholar 

  63. Voss MA, Gordon N, Maloney S, Ganesan R, Ludeman L, McCarthy K et al. Tetraspanin CD151 is a novel prognostic marker in poor outcome endometrial cancer. Br J Cancer 2011; 104: 1611–1618.

    Article  CAS  Google Scholar 

  64. Lammerding J, Kazarov AR, Huang H, Lee RT, Hemler ME . Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening. Proc Natl Acad Sci USA 2003; 100: 7616–7621.

    Article  CAS  Google Scholar 

  65. Takeda Y, Li Q, Kazarov AR, Epardaud M, Elpek K, Turley SJ et al. Diminished metastasis in tetraspanin CD151-knockout mice. Blood 2011; 118: 464–472.

    Article  CAS  Google Scholar 

  66. Sethi T, Rintoul RC, Moore SM, MacKinnon AC, Salter D, Choo C et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 1999; 5: 662–668.

    Article  CAS  Google Scholar 

  67. Dudley AC, Thomas D, Best J, Jenkins A . The STATs in cell stress-type responses. Cell Commun Signal 2004; 2: 8.

    Article  Google Scholar 

  68. Kim DJ, Tremblay ML, DiGiovanni J . Protein tyrosine phosphatases, TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation. PLoS ONE 2010; 5: e10290.

    Article  Google Scholar 

  69. Chan KS, Carbajal S, Kiguchi K, Clifford J, Sano S, DiGiovanni J . Epidermal growth factor receptor-mediated activation of Stat3 during multistage skin carcinogenesis. Cancer Res 2004; 64: 2382–2389.

    Article  CAS  Google Scholar 

  70. Mariotti A, Kedeshian PA, Dans M, Curatola AM, Gagnoux-Palacios L, Giancotti FG . EGF-R signaling through Fyn kinase disrupts the function of integrin alpha6beta4 at hemidesmosomes: role in epithelial cell migration and carcinoma invasion. J Cell Biol 2001; 155: 447–458.

    Article  CAS  Google Scholar 

  71. Kangsamaksin T, Park HJ, Trempus CS, Morris RJ . A perspective on murine keratinocyte stem cells as targets of chemically induced skin cancer. Mol Carcinog 2007; 46: 579–584.

    Article  CAS  Google Scholar 

  72. Tani H, Morris RJ, Kaur P . Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA 2000; 97: 10960–10965.

    Article  CAS  Google Scholar 

  73. Hara T, Saito Y, Hirai T, Nakamura K, Nakao K, Katsuki M et al. Deficiency of protein kinase Calpha in mice results in impairment of epidermal hyperplasia and enhancement of tumor formation in two-stage skin carcinogenesis. Cancer Res 2005; 65: 7356–7362.

    Article  CAS  Google Scholar 

  74. Rabinovitz I, Toker A, Mercurio AM . Protein kinase C-dependent mobilization of the alpha6beta4 integrin from hemidesmosomes and its association with actin-rich cell protrusions drive the chemotactic migration of carcinoma cells. J Cell Biol 1999; 146: 1147–1160.

    Article  CAS  Google Scholar 

  75. Sheng KC, van Spriel AB, Gartlan KH, Sofi M, Apostolopoulos V, Ashman L et al. Tetraspanins CD37 and CD151 differentially regulate Ag presentation and T-cell co-stimulation by DC. Eur J Immunol 2009; 39: 50–55.

    Article  CAS  Google Scholar 

  76. Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI . Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2011; 2: 162.

    Article  Google Scholar 

  77. Dlugosz AA, Glick AB, Tennenbaum T, Weinberg WC, Yuspa SH . Isolation and utilization of epidermal keratinocytes for oncogene research. Methods Enzymol 1995; 254: 3–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr R Bronson for assistance with mouse histopathology, Dr Julie Aldridge for assistance with statistical analyses, and Drs David Frank, Sarah Walker and coworkers for nifuroxazide, ST3–01, assistance with STAT3 functional assay and helpful discussions. This work was supported by NIH grant CA42368 (to MEH), and a SG Komen Career Catalyst Award (to XHY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M E Hemler.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Yang, X., Xu, F. et al. Tetraspanin CD151 plays a key role in skin squamous cell carcinoma. Oncogene 32, 1772–1783 (2013). https://doi.org/10.1038/onc.2012.205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.205

Keywords

This article is cited by

Search

Quick links