Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AML1-ETO targets and suppresses cathepsin G, a serine protease, which is able to degrade AML1-ETO in t(8;21) acute myeloid leukemia

Abstract

Although the significance of cathepsin G (CTSG) in host defense has been intensively investigated, little is known about its potential roles in granulopoiesis or leukemogenesis. We report here that CTSG is directly targeted and suppressed by AML1-ETO in t(8;21) acute myeloid leukemia (AML). Luciferase assays demonstrate that the CTSG promoter is strongly transactivated by AML1 and the AML1-dependent transactivation is suppressed by AML1-ETO. We also define a novel regulatory mechanism by which AML1-ETO-mediated transrepression requires both AML1-ETO and AML1 binding at adjacent sites, instead of the replacement of AML1 by AML1-ETO, and wild-type AML1 binding is a prerequisite for the repressive effect caused by AML1-ETO. Further evidence shows that CTSG, as a hematopoietic serine protease, can degrade AML1-ETO both in vitro and in vivo. Restoration of CTSG induces partial differentiation, growth inhibition and apoptosis in AML1-ETO-positive cells. In addition to t(8;21) AML, CTSG downregulation is observed in AML patients with other cytogenetic/genetic abnormalities that potentially interrupt normal AML1 function, that is, inv(16) and EVI1 overexpression. Thus, the targeting and suppression of CTSG by AML1-ETO in t(8;21) AML may provide a mechanism for leukemia cells to escape from the intracellular surveillance system by preventing degradation of foreign proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Peterson LF, Zhang DE . The 8;21 translocation in leukemogenesis. Oncogene 2004; 23: 4255–4262.

    Article  CAS  Google Scholar 

  2. Licht JD . AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 2001; 20: 5660–5679.

    Article  CAS  Google Scholar 

  3. Frank R, Zhang J, Uchida H, Meyers S, Hiebert SW, Nimer SD . The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 1995; 11: 2667–2674.

    CAS  PubMed  Google Scholar 

  4. Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD . PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 1994; 14: 5558–5568.

    Article  CAS  Google Scholar 

  5. Uchida H, Zhang J, Nimer SD . AML1A and AML1B can transactivate the human IL-3 promoter. J Immunol 1997; 158: 2251–2258.

    CAS  PubMed  Google Scholar 

  6. Hug BA, Lazar MA . ETO interacting proteins. Oncogene 2004; 23: 4270–4274.

    Article  CAS  Google Scholar 

  7. Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M et alEmbryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 1997; 15: 303–306.

    Article  CAS  Google Scholar 

  8. Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM et alExpression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998; 91: 3134–3143.

    CAS  Google Scholar 

  9. Klampfer L, Zhang J, Zelenetz AO, Uchida H, Nimer SD . The AML1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci USA 1996; 93: 14059–14064.

    Article  CAS  Google Scholar 

  10. Traver D, Akashi K, Weissman IL, Lagasse E . Mice defective in two apoptosis pathways in the myeloid lineage develop acute myeloblastic leukemia. Immunity 1998; 9: 47–57.

    Article  CAS  Google Scholar 

  11. Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG et alThe myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 2003; 101: 270–277.

    Article  CAS  Google Scholar 

  12. McGhee L, Bryan J, Elliott L, Grimes HL, Kazanjian A, Davis JN et alGfi-1 attaches to the nuclear matrix, associates with ETO (MTG8) and histone deacetylase proteins, and represses transcription using a TSA-sensitive mechanism. J Cell Biochem 2003; 89: 1005–1018.

    Article  CAS  Google Scholar 

  13. Westendorf JJ, Yamamoto CM, Lenny N, Downing JR, Selsted ME, Hiebert SW . The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 1998; 18: 322–333.

    Article  CAS  Google Scholar 

  14. Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    Article  CAS  Google Scholar 

  15. Bitter MA, Le Beau MM, Rowley JD, Larson RA, Golomb HM, Vardiman JW . Associations between morphology, karyotype, and clinical features in myeloid leukemias. Hum Pathol 1987; 18: 211–225.

    Article  CAS  Google Scholar 

  16. Pham CT . Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 2006; 6: 541–550.

    Article  CAS  Google Scholar 

  17. Dengler R, Munstermann U, al-Batran S, Hausner I, Faderl S, Nerl C et alImmunocytochemical and flow cytometric detection of proteinase 3 (myeloblastin) in normal and leukaemic myeloid cells. Br J Haematol 1995; 89: 250–257.

    Article  CAS  Google Scholar 

  18. Lausen J, Liu S, Fliegauf M, Lubbert M, Werner MH . ELA2 is regulated by hematopoietic transcription factors, but not repressed by AML1-ETO. Oncogene 2006; 25: 1349–1357.

    Article  CAS  Google Scholar 

  19. Mulloy JC, Jankovic V, Wunderlich M, Delwel R, Cammenga J, Krejci O et alAML1-ETO fusion protein up-regulates TRKA mRNA expression in human CD34+ cells, allowing nerve growth factor-induced expansion. Proc Natl Acad Sci USA 2005; 102: 4016–4021.

    Article  CAS  Google Scholar 

  20. Gardini A, Cesaroni M, Luzi L, Okumura AJ, Biggs JR, Minardi SP et alAML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets. PLoS Genet 2008; 4: e1000275.

    Article  Google Scholar 

  21. Dunne J, Cullmann C, Ritter M, Soria NM, Drescher B, Debernardi S et alsiRNA-mediated AML1/MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts. Oncogene 2006; 25: 6067–6078.

    Article  CAS  Google Scholar 

  22. Korkmaz B, Moreau T, Gauthier F . Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie 2008; 90: 227–242.

    Article  CAS  Google Scholar 

  23. Piazza F, Valens J, Lagasse E, Schindler C . Myeloid differentiation of FdCP1 cells is dependent on Stat5 processing. Blood 2000; 96: 1358–1365.

    CAS  PubMed  Google Scholar 

  24. Biggs JR, Yang J, Gullberg U, Muchardt C, Yaniv M, Kraft AS . The human brm protein is cleaved during apoptosis: the role of cathepsin G. Proc Natl Acad Sci USA 2001; 98: 3814–3819.

    Article  CAS  Google Scholar 

  25. Shimada H, Ichikawa H, Ohki M . Potential involvement of the AML1-MTG8 fusion protein in the granulocytic maturation characteristic of the t(8;21) acute myelogenous leukemia revealed by microarray analysis. Leukemia 2002; 16: 874–885.

    Article  CAS  Google Scholar 

  26. Fliegauf M, Stock M, Berg T, Lubbert M . Williams–Beuren syndrome critical region-5/non-T-cell activation linker: a novel target gene of AML1/ETO. Oncogene 2004; 23: 9070–9081.

    Article  CAS  Google Scholar 

  27. Lennartsson A, Garwicz D, Lindmark A, Gullberg U . The proximal promoter of the human cathepsin G gene conferring myeloid-specific expression includes C/EBP, c-myb and PU.1 binding sites. Gene 2005; 356: 193–202.

    Article  CAS  Google Scholar 

  28. Linggi B, Muller-Tidow C, van de LL, Hu M, Nip J, Serve H et alThe t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 2002; 8: 743–750.

    Article  CAS  Google Scholar 

  29. Wingender E . The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief Bioinform 2008; 9: 326–332.

    Article  CAS  Google Scholar 

  30. Garwicz D, Lindmark A, Persson AM, Gullberg U . On the role of the proform-conformation for processing and intracellular sorting of human cathepsin G. Blood 1998; 92: 1415–1422.

    CAS  PubMed  Google Scholar 

  31. Heidenreich O, Krauter J, Riehle H, Hadwiger P, John M, Heil G et alAML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells. Blood 2003; 101: 3157–3163.

    Article  CAS  Google Scholar 

  32. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van D-K, Boer JM et alPrognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  Google Scholar 

  33. Tomasson MH, Xiang Z, Walgren R, Zhao Y, Kasai Y, Miner T et alSomatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood 2008; 111: 4797–4808.

    Article  CAS  Google Scholar 

  34. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R . Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 2009; 113: 3088–3091.

    Article  CAS  Google Scholar 

  35. Kadkol SS, Bruno A, Dodge C, Lindgren V, Ravandi F . Comprehensive analysis of CBFbeta-MYH11 fusion transcripts in acute myeloid leukemia by RT–PCR analysis. J Mol Diagn 2004; 6: 22–27.

    Article  CAS  Google Scholar 

  36. Senyuk V, Sinha KK, Li D, Rinaldi CR, Yanamandra S, Nucifora G . Repression of RUNX1 activity by EVI1: a new role of EVI1 in leukemogenesis. Cancer Res 2007; 67: 5658–5666.

    Article  CAS  Google Scholar 

  37. Mulloy JC, Cammenga J, MacKenzie KL, Berguido FJ, Moore MA, Nimer SD . The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood 2002; 99: 15–23.

    Article  CAS  Google Scholar 

  38. Mulloy JC, Cammenga J, Berguido FJ, Wu K, Zhou P, Comenzo RL et alMaintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood 2003; 102: 4369–4376.

    Article  CAS  Google Scholar 

  39. Igney FH, Krammer PH . Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 2002; 71: 907–920.

    CAS  Google Scholar 

  40. Howcroft TK, Weissman JD, Gegonne A, Singer DSA . T lymphocyte-specific transcription complex containing RUNX1 activates MHC class I expression. J Immunol 2005; 174: 2106–2115.

    Article  CAS  Google Scholar 

  41. Okumura AJ, Peterson LF, Okumura F, Boyapati A, Zhang DE . t(8;21)(q22;q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Blood 2008; 112: 1392–1401.

    Article  CAS  Google Scholar 

  42. Laricchia-Robbio L, Premanand K, Rinaldi CR, Nucifora G . EVI1 impairs myelopoiesis by deregulation of PU.1 function. Cancer Res 2009; 69: 1633–1642.

    Article  CAS  Google Scholar 

  43. Kitareewan S, Roebuck BD, Demidenko E, Sloboda RD, Dmitrovsky E . Lysosomes and trivalent arsenic treatment in acute promyelocytic leukemia. J Natl Cancer Inst 2007; 99: 41–52.

    Article  CAS  Google Scholar 

  44. Puissant A, Colosetti P, Robert G, Cassuto JP, Raynaud S, Auberger P . Cathepsin B release after imatinib-mediated lysosomal membrane permeabilization triggers BCR-ABL cleavage and elimination of chronic myelogenous leukemia cells. Leukemia 2010; 24: 115–124.

    Article  CAS  Google Scholar 

  45. Wang L, Zhao WL, Yan JS, Liu P, Sun HP, Zhou GB et alEriocalyxin B induces apoptosis of t(8;21) leukemia cells through NF-kappaB and MAPK signaling pathways and triggers degradation of AML1-ETO oncoprotein in a caspase-3-dependent manner. Cell Death Differ 2007; 14: 306–317.

    Article  Google Scholar 

  46. Zhou GB, Kang H, Wang L, Gao L, Liu P, Xie J et alOridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood 2007; 109: 3441–3450.

    Article  CAS  Google Scholar 

  47. Yang G, Thompson MA, Brandt SJ, Hiebert SW . Histone deacetylase inhibitors induce the degradation of the t(8;21) fusion oncoprotein. Oncogene 2007; 26: 91–101.

    Article  Google Scholar 

  48. Jiang Y, Xue ZH, Shen WZ, Du KM, Yan H, Yu Y et alDesferrioxamine induces leukemic cell differentiation potentially by hypoxia-inducible factor-1 alpha that augments transcriptional activity of CCAAT/enhancer-binding protein-alpha. Leukemia 2005; 19: 1239–1247.

    Article  CAS  Google Scholar 

  49. Wang K, Wang P, Shi J, Zhu X, He M, Jia X et alPML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell 2010; 17: 186–197.

    Article  CAS  Google Scholar 

  50. Lane AA, Ley TJ . Neutrophil elastase cleaves PML-RARalpha and is important for the development of acute promyelocytic leukemia in mice. Cell 2003; 115: 305–318.

    Article  CAS  Google Scholar 

  51. Corsello SM, Roti G, Ross KN, Chow KT, Galinsky I, DeAngelo DJ et alIdentification of AML1-ETO modulators by chemical genomics. Blood 2009; 113: 6193–6205.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Lübbert M for providing the AML1-ETO-inducible cell line, U937-A/E9/14/18. This work was supported in part by the Ministry of Science and Technology Grants of China (2009CB825607, 2012AA02A211 and 2011CB910202) and National Natural Science Foundation Grants of China (31171257, 90919059 and 30971623).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K-K Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, W., Wu, K., Li, YZ. et al. AML1-ETO targets and suppresses cathepsin G, a serine protease, which is able to degrade AML1-ETO in t(8;21) acute myeloid leukemia. Oncogene 32, 1978–1987 (2013). https://doi.org/10.1038/onc.2012.204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.204

Keywords

This article is cited by

Search

Quick links