Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Promotion of DNA repair by nuclear IKKβ phosphorylation of ATM in response to genotoxic stimuli

Abstract

Ataxia-telangiectasia mutated (ATM) is one of the key molecules involved in the cellular response to DNA damage. A portion of activated ATM is exported from the nucleus into the cytoplasm, where it activates the I kappa B kinase/nuclear factor kappa B (IKK/NF-κB) signaling pathway. It has been thought that activated IKKβ, which is a critical kinase for NF-κB activation, generally resides in the cytoplasm and phosphorylates cytoplasmic downstream molecules, such as IκBα. Here, we identified a new role for IKKβ during the response to DNA damage. ATM phosphorylation in response to alkylating agents consisted of two phases: the early phase (up to 3 h) and late phase (after 6 h). A portion of the activated IKKβ generated during the DNA damage response was found to translocate into the nucleus and directly phosphorylate ATM in the late phase. Furthermore, the phosphorylation of ATM by nuclear IKKβ was suggested to promote DNA repair. In parallel, activated IKKβ induced classical NF-κB activation and was involved in anti-apoptosis. Our findings define the function of IKKβ during the response to DNA damage, which promotes cell survival and DNA repair, and maintains cellular homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jackson SP, Bartek J . The DNA-damage response in human biology and disease. Nature 2009; 461: 1071–1078.

    Article  CAS  Google Scholar 

  2. Shiloh Y . ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003; 3: 155–168.

    Article  CAS  Google Scholar 

  3. Rotman G, Shiloh Y . ATM: a mediator of multiple responses to genotoxic stress. Oncogene 1999; 18: 6135–6144.

    Article  CAS  Google Scholar 

  4. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995; 268: 1749–1753.

    Article  CAS  Google Scholar 

  5. Meyn MS . Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res 1995; 55: 5991–6001.

    CAS  PubMed  Google Scholar 

  6. Stern N, Hochman A, Zemach N, Weizman N, Hammel I, Shiloh Y et al. Accumulation of DNA damage and reduced levels of nicotine adenine dinucleotide in the brains of Atm-deficient mice. J Biol Chem 2002; 277: 602–608.

    Article  CAS  Google Scholar 

  7. Bakkenist CJ, Kastan MB . DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421: 499–506.

    Article  CAS  Google Scholar 

  8. Landvik NE, Arlt VM, Nagy E, Solhaug A, Tekpli X, Schmeiser HH et al. 3-Nitrobenzanthrone and 3-aminobenzanthrone induce DNA damage and cell signalling in Hepa1c1c7 cells. Mutat Res 2010; 684: 11–23.

    Article  CAS  Google Scholar 

  9. Debiak M, Nikolova T, Kaina B . Loss of ATM sensitizes against O6-methylguanine triggered apoptosis, SCEs and chromosomal aberrations. DNA Repair 2004; 3: 359–368.

    Article  CAS  Google Scholar 

  10. Kurz EU, Douglas P, Lees-Miller SP . Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem 2004; 279: 53272–53281.

    Article  CAS  Google Scholar 

  11. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT . ATM activation by oxidative stress. Science 2010; 330: 517–521.

    Article  CAS  Google Scholar 

  12. Li N, Banin S, Ouyang H, Li GC, Courtois G, Shiloh Y et al. ATM is required for IkappaB kinase (IKKk) activation in response to DNA double strand breaks. J Biol Chem 2001; 276: 8898–8903.

    Article  CAS  Google Scholar 

  13. Miyamoto S . Nuclear initiated NF-kappaB signaling: NEMO and ATM take center stage. Cell Res 2011; 21: 116–130.

    Article  CAS  Google Scholar 

  14. Ghosh S, Karin M . Missing pieces in the NF-kappaB puzzle. Cell 2002; 109 (Suppl): S81–S96.

    Article  CAS  Google Scholar 

  15. Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M et al. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med 1999; 189: 1839–1845.

    Article  CAS  Google Scholar 

  16. Hayakawa Y, Maeda S, Nakagawa H, Hikiba Y, Shibata W, Sakamoto K et al. Effectiveness of IkappaB kinase inhibitors in murine colitis-associated tumorigenesis. J Gastroenterol 2009; 44: 935–943.

    Article  CAS  Google Scholar 

  17. Maeda S, Hikiba Y, Sakamoto K, Nakagawa H, Hirata Y, Hayakawa Y et al. Ikappa B kinasebeta/nuclear factor-kappaB activation controls the development of liver metastasis by way of interleukin-6 expression. Hepatology 2009; 50: 1851–1860.

    Article  CAS  Google Scholar 

  18. Karin M . How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 1999; 18: 6867–6874.

    Article  CAS  Google Scholar 

  19. Wu ZH, Shi Y, Tibbetts RS, Miyamoto S . Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 2006; 311: 1141–1146.

    Article  CAS  Google Scholar 

  20. Wu ZH, Wong ET, Shi Y, Niu J, Chen Z, Miyamoto S et al. ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol Cell 2010; 40: 75–86.

    Article  CAS  Google Scholar 

  21. Stilmann M, Hinz M, Arslan SC, Zimmer A, Schreiber V, Scheidereit C . A nuclear poly(ADP-ribose)-dependent signalosome confers DNA damage-induced IkappaB kinase activation. Mol Cell 2009; 36: 365–378.

    Article  CAS  Google Scholar 

  22. Hinz M, Stilmann M, Arslan SC, Khanna KK, Dittmar G, Scheidereit C . A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-kappaB activation. Mol Cell 2010; 40: 63–74.

    Article  CAS  Google Scholar 

  23. Biton S, Ashkenazi A . NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-alpha feedforward signaling. Cell 2011; 145: 92–103.

    Article  CAS  Google Scholar 

  24. Chan JY, Ruchirawat M, Lapeyre JN, Becker FF . The protective role of thiol reducing agents in the in vitro inhibition of rat liver DNA methylase by direct acting carcinogens. Carcinogenesis 1983; 4: 1097–1100.

    Article  CAS  Google Scholar 

  25. Pusapati RV, Rounbehler RJ, Hong S, Powers JT, Yan M, Kiguchi K et al. ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proc Natl Acad Sci USA 2006; 103: 1446–1451.

    Article  CAS  Google Scholar 

  26. Masutani M, Nozaki T, Nakamoto K, Nakagama H, Suzuki H, Kusuoka H et al. The response of Parp knockout mice against DNA damaging agents. Mutat Res 2000; 462: 159–166.

    Article  CAS  Google Scholar 

  27. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000; 35: 206–221.

    Article  CAS  Google Scholar 

  28. Roberts KP, Sobrino JA, Payton J, Mason LB, Turesky RJ . Determination of apurinic/apyrimidinic lesions in DNA with high-performance liquid chromatography and tandem mass spectrometry. Chem Res Toxicol 2006; 19: 300–309.

    Article  CAS  Google Scholar 

  29. Zhou X, Liberman RG, Skipper PL, Margolin Y, Tannenbaum SR, Dedon PC . Quantification of DNA strand breaks and abasic sites by oxime derivatization and accelerator mass spectrometry: application to gamma-radiation and peroxynitrite. Anal Biochem 2005; 343: 84–92.

    Article  CAS  Google Scholar 

  30. Hegde ML, Hazra TK, Mitra S . Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 2008; 18: 27–47.

    Article  CAS  Google Scholar 

  31. Chou WC, Wang HC, Wong FH, Ding SL, Wu PE, Shieh SY et al. Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J 2008; 27: 3140–3150.

    Article  CAS  Google Scholar 

  32. Wu L, Shao L, An N, Wang J, Pazhanisamy S, Feng W et al. IKKbeta Regulates the Repair of DNA Double-Strand Breaks Induced by Ionizing Radiation in MCF-7 Breast Cancer Cells. PLoS One 2011; 6: e18447.

    Article  CAS  Google Scholar 

  33. Kenneth NS, Mudie S, Rocha S . IKK and NF-kappaB-mediated regulation of Claspin impacts on ATR checkpoint function. EMBO J 2010; 29: 2966–2978.

    Article  CAS  Google Scholar 

  34. Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S . Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 2003; 115: 565–576.

    Article  CAS  Google Scholar 

  35. Maeda S, Omata M . Inflammation and cancer: role of nuclear factor-kappaB activation. Cancer Sci 2008; 99: 836–842.

    Article  CAS  Google Scholar 

  36. Kastan MB, Bartek J . Cell-cycle checkpoints and cancer. Nature 2004; 432: 316–323.

    Article  CAS  Google Scholar 

  37. Zhou BB, Elledge SJ . The DNA damage response: putting checkpoints in perspective. Nature 2000; 408: 433–439.

    Article  CAS  Google Scholar 

  38. Maeda S, Kamata H, Luo JL, Leffert H, Karin M . IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121: 977–990.

    Article  CAS  Google Scholar 

  39. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118: 285–296.

    CAS  Google Scholar 

  40. Sakamoto K, Hikiba Y, Nakagawa H, Hayakawa Y, Yanai A, Akanuma M et al. Inhibitor of kappaB kinase beta regulates gastric carcinogenesis via interleukin-1alpha expression. Gastroenterology 2010; 139: 226–238 e6.

    Article  CAS  Google Scholar 

  41. Tsuchiya Y, Asano T, Nakayama K, Kato T, Karin M, Kamata H . Nuclear IKKbeta is an adaptor protein for IkappaBalpha ubiquitination and degradation in UV-induced NF-kappaB activation. Mol Cell 2010; 39: 570–582.

    Article  CAS  Google Scholar 

  42. Pellegrini M, Celeste A, Difilippantonio S, Guo R, Wang W, Feigenbaum L et al. Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 2006; 443: 222–225.

    Article  CAS  Google Scholar 

  43. Kim YC, Gerlitz G, Furusawa T, Catez F, Nussenzweig A, Oh KS et al. Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat Cell Biol 2009; 11: 92–96.

    Article  CAS  Google Scholar 

  44. So S, Davis AJ, Chen DJ . Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites. J Cell Biol 2009; 187: 977–990.

    Article  CAS  Google Scholar 

  45. Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF . Involvement of novel autophosphorylation sites in ATM activation. EMBO J 2006; 25: 3504–3514.

    Article  CAS  Google Scholar 

  46. Daniel JA, Pellegrini M, Lee JH, Paull TT, Feigenbaum L, Nussenzweig A . Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo. J Cell Biol 2008; 183: 777–783.

    Article  CAS  Google Scholar 

  47. Golding SE, Rosenberg E, Valerie N, Hussaini I, Frigerio M, Cockcroft XF et al. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol Cancer Ther 2009; 8: 2894–2902.

    Article  CAS  Google Scholar 

  48. Palmieri D, Valentino T, D'Angelo D, De Martino I, Postiglione I, Pacelli R et al. HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene 2011; 30: 3024–3035.

    Article  CAS  Google Scholar 

  49. Taricani L, Shanahan F, Parry D . Replication stress activates DNA polymerase alpha-associated Chk1. Cell Cycle 2009; 8: 482–489.

    Article  CAS  Google Scholar 

  50. Hirata Y, Maeda S, Ohmae T, Shibata W, Yanai A, Ogura K et al. Helicobacter pylori induces IkappaB kinase alpha nuclear translocation and chemokine production in gastric epithelial cells. Infect Immun 2006; 74: 1452–1461.

    Article  CAS  Google Scholar 

  51. Wong YH, Lee TY, Liang HK, Huang CM, Wang TY, Yang YH et al. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res 2007; 35: W588–W594.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Yosef Shiloh for providing us with the ATM-encoding plasmid. SM was supported by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (22300317) and Naito Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Maeda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, K., Hikiba, Y., Nakagawa, H. et al. Promotion of DNA repair by nuclear IKKβ phosphorylation of ATM in response to genotoxic stimuli. Oncogene 32, 1854–1862 (2013). https://doi.org/10.1038/onc.2012.192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.192

Keywords

This article is cited by

Search

Quick links