Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The deubiquitylase USP37 links REST to the control of p27 stability and cell proliferation

A Corrigendum to this article was published on 18 July 2016

Abstract

The RE1 silencing transcription factor (REST) is a repressor of neuronal differentiation and its elevated expression in neural cells blocks neuronal differentiation. In this study, we demonstrate a role for REST in the control of proliferation of medulloblastoma cells. REST expression decreased the levels of cyclin-dependent kinase (CDK)NIB/p27, a CDK inhibitor and a brake of cell proliferation in these cells. The reciprocal relationship between REST and p27 was validated in human tumor samples. REST knockdown in medulloblastoma cells derepessed a novel REST target gene encoding the deubiquitylase ubiquitin (Ub)-specific peptidase 37 (USP37). Ectopically expressed wild-type USP37 formed a complex with p27, promoted its deubiquitination and stabilization and blocked cell proliferation. Knockdown of REST and USP37 prevented p27 stabilization and blocked the diminution in proliferative potential that normally accompanied REST loss. Unexpectedly, wild-type USP37 expression also induced the expression of REST-target neuronal differentiation genes even though REST levels were unaffected. In contrast, a mutant of USP37 carrying a site-directed change in a conserved cysteine failed to rescue REST-mediated p27 destabilization, maintenance of cell proliferation and blockade to neuronal differentiation. Consistent with these findings, a significant correlation between USP37 and p27 was observed in patient tumors. Collectively, these findings provide a novel connection between REST and the proteasomal machinery in the control of p27 and cell proliferation in medulloblastoma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 1995; 80: 949–957.

    Article  CAS  Google Scholar 

  2. Schoenherr CJ, Anderson DJ . The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 1995; 267: 1360–1363.

    Article  CAS  Google Scholar 

  3. Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G . REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 2005; 121: 645–657.

    Article  CAS  Google Scholar 

  4. Ballas N, Mandel G . The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 2005; 15: 500–506.

    Article  CAS  Google Scholar 

  5. Hsieh J, Gage FH . Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 2005; 17: 664–671.

    Article  CAS  Google Scholar 

  6. Ooi L, Wood IC . Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet 2007; 8: 544–554.

    Article  CAS  Google Scholar 

  7. Kagalwala MN, Singh SK, Majumder S . Stemness is only a state of the cell. Cold Spring Harb Symp Quant Biol 2008; 73: 227–234.

    Article  CAS  Google Scholar 

  8. Abrajano JJ, Qureshi IA, Gokhan S, Zheng D, Bergman A, Mehler MF . REST and CoREST modulate neuronal subtype specification, maturation and maintenance. PLoS One 2009; 4: e7936.

    Article  Google Scholar 

  9. Juliandi B, Abematsu M, Nakashima K . Chromatin remodeling in neural stem cell differentiation. Curr Opin Neurobiol 2010; 20: 408–415.

    Article  CAS  Google Scholar 

  10. Gopalakrishnan V . REST and the RESTless: in stem cells and beyond. Future Neurol 2009; 4: 317–329.

    Article  CAS  Google Scholar 

  11. Gao Z, Ure K, Ding P, Nashaat M, Yuan L, Ma J et al. The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J Neurosci 2011; 31: 9772–9786.

    Article  CAS  Google Scholar 

  12. Lawinger P, Venugopal R, Guo ZS, Immaneni A, Sengupta D, Lu W et al. The neuronal repressor REST/NRSF is an essential regulator in medulloblastoma cells. Nat Med 2000; 6: 826–831.

    Article  CAS  Google Scholar 

  13. Su X, Gopalakrishnan V, Stearns D, Aldape K, Lang FF, Fuller G et al. Abnormal expression of REST/NRSF and Myc in neural stem/progenitor cells causes cerebellar tumors by blocking neuronal differentiation. Mol Cell Biol 2006; 26: 1666–1678.

    Article  CAS  Google Scholar 

  14. Fuller GN, Su X, Price RE, Cohen ZR, Lang FF, Sawaya R et al. Many human medulloblastoma tumors overexpress repressor element-1 silencing transcription (REST)/neuron-restrictive silencer factor, which can be functionally countered by REST-VP16. Mol Cancer Ther 2005; 4: 343–349.

    CAS  PubMed  Google Scholar 

  15. Miyazawa K, Himi T, Garcia V, Yamagishi H, Sato S, Ishizaki Y . A role for p27/Kip1 in the control of cerebellar granule cell precursor proliferation. J Neurosci 2000; 20: 5756–5763.

    Article  CAS  Google Scholar 

  16. Goto T, Mitsuhashi T, Takahashi T . Altered patterns of neuron production in the p27 knockout mouse. Dev Neurosci 2004; 26: 208–217.

    Article  CAS  Google Scholar 

  17. Zindy F, Knoepfler PS, Xie S, Sherr CJ, Eisenman RN, Roussel MF . N-Myc and the cyclin-dependent kinase inhibitors p18Ink4c and p27Kip1 coordinately regulate cerebellar development. Proc Natl Acad Sci USA 2006; 103: 11579–11583.

    Article  CAS  Google Scholar 

  18. Bhatia B, Northcott PA, Hambardzumyan D, Govindarajan B, Brat DJ, Arbiser JL et al. Tuberous sclerosis complex suppression in cerebellar development and medulloblastoma: separate regulation of mammalian target of rapamycin activity and p27 Kip1 localization. Cancer Res 2009; 69: 7224–7234.

    Article  CAS  Google Scholar 

  19. Bhatia B, Malik A, Fernandez LA, Kenney AM . p27(Kip1), a double-edged sword in Shh-mediated medulloblastoma: Tumor accelerator and suppressor. Cell Cycle 2010; 9: 4307–4314.

    Article  CAS  Google Scholar 

  20. Bhatia B, Nahle Z, Kenney AM . Double trouble: when sonic hedgehog signaling meets TSC inactivation. Cell Cycle 2010; 9: 456–459.

    Article  CAS  Google Scholar 

  21. Ayrault O, Zindy F, Rehg J, Sherr CJ, Roussel MF . Two tumor suppressors, p27Kip1 and patched-1, collaborate to prevent medulloblastoma. Mol Cancer Res 2009; 7: 33–40.

    Article  CAS  Google Scholar 

  22. Todi SV, Paulson HL . Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci 2011.

  23. Reyes-Turcu FE, Ventii KH, Wilkinson KD . Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78: 363–397.

    Article  CAS  Google Scholar 

  24. Sowa ME, Bennett EJ, Gygi SP, Harper JW . Defining the human deubiquitinating enzyme interaction landscape. Cell 2009; 138: 389–403.

    Article  CAS  Google Scholar 

  25. Hatton BA, Knoepfler PS, Kenney AM, Rowitch DH, de Alboran IM, Olson JM et al. N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Cancer Res 2006; 66: 8655–8661.

    Article  CAS  Google Scholar 

  26. Knoepfler PS, Cheng PF, Eisenman RN . N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 2002; 16: 2699–2712.

    Article  CAS  Google Scholar 

  27. Bloom J, Pagano M . Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 2003; 13: 41–47.

    Article  CAS  Google Scholar 

  28. Carrano AC, Eytan E, Hershko A, Pagano M . SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1: 193–199.

    Article  CAS  Google Scholar 

  29. Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 2008; 111: 4690–4699.

    Article  CAS  Google Scholar 

  30. Frescas D, Pagano M . Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 2008; 8: 438–449.

    Article  CAS  Google Scholar 

  31. Hara T, Kamura T, Kotoshiba S, Takahashi H, Fujiwara K, Onoyama I et al. Role of the UBL-UBA protein KPC2 in degradation of p27 at G1 phase of the cell cycle. Mol Cell Biol 2005; 25: 9292–9303.

    Article  CAS  Google Scholar 

  32. Kamura T, Hara T, Matsumoto M, Ishida N, Okumura F, Hatakeyama S et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 2004; 6: 1229–1235.

    Article  CAS  Google Scholar 

  33. Keller UB, Old JB, Dorsey FC, Nilsson JA, Nilsson L, MacLean KH et al. Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. EMBO J 2007; 26: 2562–2574.

    Article  CAS  Google Scholar 

  34. Kotoshiba S, Kamura T, Hara T, Ishida N, Nakayama KI . Molecular dissection of the interaction between p27 and Kip1 ubiquitylation-promoting complex, the ubiquitin ligase that regulates proteolysis of p27 in G1 phase. J Biol Chem 2005; 280: 17694–17700.

    Article  CAS  Google Scholar 

  35. Lu Z, Hunter T . Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle 2010; 9: 2400–2411.

    Google Scholar 

  36. Ungermannova D, Gao Y, Liu X . Ubiquitination of p27Kip1 requires physical interaction with cyclin E and probable phosphate recognition by SKP2. J Biol Chem 2005; 280: 30301–30309.

    Article  CAS  Google Scholar 

  37. Masuda K, Ishikawa Y, Onoyama I, Unno M, de Alboran IM, Nakayama KI et al. Complex regulation of cell-cycle inhibitors by Fbxw7 in mouse embryonic fibroblasts. Oncogene 2010; 29: 1798–1809.

    Article  CAS  Google Scholar 

  38. Wilkinson KD . DUBs at a glance. J Cell Sci 2009; 122 (Part 14): 2325–2329.

    Article  CAS  Google Scholar 

  39. Komander D, Clague MJ, Urbe S . Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10: 550–563.

    Article  CAS  Google Scholar 

  40. Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M et al. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci USA 2004; 101: 10458–10463.

    Article  CAS  Google Scholar 

  41. Sun YM, Cooper M, Finch S, Lin HH, Chen ZF, Williams BP et al. Rest-mediated regulation of extracellular matrix is crucial for neural development. PLoS One 2008; 3: e3656.

    Article  Google Scholar 

  42. Guardavaccaro D, Frescas D, Dorrello NV, Peschiaroli A, Multani AS, Cardozo T et al. Control of chromosome stability by the beta-TrCP-REST-Mad2 axis. Nature 2008; 452: 365–369.

    Article  CAS  Google Scholar 

  43. Chang L, Schwarzenbach H, Meyer-Staeckling S, Brandt B, Mayr GW, Weitzel JM et al. Expression regulation of the metastasis-promoting protein InsP3-kinase-A in tumor cells. Mol Cancer Res 2011.

  44. Abrajano JJ, Qureshi IA, Gokhan S, Zheng D, Bergman A, Mehler MF . Differential deployment of REST and CoREST promotes glial subtype specification and oligodendrocyte lineage maturation. PLoS One 2009; 4: e7665.

    Article  Google Scholar 

  45. Kohyama J, Sanosaka T, Tokunaga A, Takatsuka E, Tsujimura K, Okano H et al. BMP-induced REST regulates the establishment and maintenance of astrocytic identity. J Cell Biol 2010; 189: 159–170.

    Article  CAS  Google Scholar 

  46. Ravanpay AC, Hansen SJ, Olson JM . Transcriptional inhibition of REST by NeuroD2 during neuronal differentiation. Mol Cell Neurosci 2010; 44: 178–189.

    Article  CAS  Google Scholar 

  47. Tomasoni R, Negrini S, Fiordaliso S, Klajn A, Tkatch T, Mondino A et al. A signaling loop of REST, TSC2 and {beta}-catenin governs proliferation and function of PC12 neural cells. J Cell Sci 2011; 124 (Pt 18): 3174–3186.

    Article  CAS  Google Scholar 

  48. Wander SA, Zhao D, Slingerland JM . p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clin Cancer Res 2011; 17: 12–18.

    Article  CAS  Google Scholar 

  49. Malumbres M, Barbacid M . Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166.

    Article  CAS  Google Scholar 

  50. Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G et al. Cyclin-dependent kinases: a family portrait. Nat Cell Biol 2009; 11: 1275–1276.

    Article  CAS  Google Scholar 

  51. Blain SW . Switching cyclin D-Cdk4 kinase activity on and off. Cell Cycle 2008; 7: 892–898.

    Article  CAS  Google Scholar 

  52. Chu IM, Hengst L, Slingerland JM . The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008; 8: 253–267.

    Article  CAS  Google Scholar 

  53. Kaldis P . Another piece of the p27Kip1 puzzle. Cell 2007; 128: 241–244.

    Article  CAS  Google Scholar 

  54. Pagano M . Control of DNA synthesis and mitosis by the Skp2-p27-Cdk1/2 axis. Mol Cell 2004; 14: 414–416.

    Article  CAS  Google Scholar 

  55. Reed SI . Keeping p27(Kip1) in the cytoplasm: a second front in cancer’s war on p27. Cell Cycle 2002; 1: 389–390.

    Article  CAS  Google Scholar 

  56. Koff A . How to decrease p27Kip1 levels during tumor development. Cancer Cell 2006; 9: 75–76.

    Article  CAS  Google Scholar 

  57. Huang X, Summers MK, Pham V, Lill JR, Liu J, Lee G et al. Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. Mol Cell 2011; 42: 511–523.

    Article  CAS  Google Scholar 

  58. Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang A et al. SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 2008; 452: 370–374.

    Article  CAS  Google Scholar 

  59. Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 2005; 121: 837–848.

    Article  CAS  Google Scholar 

  60. Spencer EM, Chandler KE, Haddley K, Howard MR, Hughes D, Belyaev ND et al. Regulation and role of REST and REST4 variants in modulation of gene expression in in vivo and in vitro in epilepsy models. Neurobiol Dis 2006; 24: 41–52.

    Article  CAS  Google Scholar 

  61. Coulson JM . Transcriptional regulation: cancer, neurons and the REST. Curr Biol 2005; 15: R665–R668.

    Article  CAS  Google Scholar 

  62. Pereg Y, Liu BY, O’Rourke KM, Sagolla M, Dey A, Komuves L et al. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. Nat Cell Biol 2010; 12: 400–406.

    Article  CAS  Google Scholar 

  63. Mani A, Gelmann EP . The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 2005; 23: 4776–4789.

    Article  CAS  Google Scholar 

  64. Stegmeier F, Sowa ME, Nalepa G, Gygi SP, Harper JW, Elledge SJ . The tumor suppressor CYLD regulates entry into mitosis. Proc Natl Acad Sci USA 2007; 104: 8869–8874.

    Article  CAS  Google Scholar 

  65. Peschiaroli A, Skaar JR, Pagano M, Melino G . The ubiquitin-specific protease USP47 is a novel beta-TRCP interactor regulating cell survival. Oncogene 2010; 29: 1384–1393.

    Article  CAS  Google Scholar 

  66. McFarlane C, Kelvin AA, de la Vega M, Govender U, Scott CJ, Burrows JF et al. The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1-S progression. Cancer Res 2010; 70: 3329–3339.

    Article  CAS  Google Scholar 

  67. van Leuken RJ, Luna-Vargas MP, Sixma TK, Wolthuis RM, Medema RH . Usp39 is essential for mitotic spindle checkpoint integrity and controls mRNA-levels of aurora B. Cell Cycle 2008; 7: 2710–2719.

    Article  CAS  Google Scholar 

  68. Eletr ZM, Wilkinson KD . An emerging model for BAP1’s role in regulating cell cycle progression. Cell Biochem Biophys 2011; 60: 3–11.

    Article  CAS  Google Scholar 

  69. Hayes SD, Cdc25A Harper JW . and Dub3 in a high-stakes balancing act. Nat Cell Biol 2010; 12: 311–313.

    Article  CAS  Google Scholar 

  70. Aguilera DG, Das CM, Sinnappah-Kang ND, Joyce C, Taylor PH, Wen S et al. Reactivation of death receptor 4 (DR4) expression sensitizes medulloblastoma cell lines to TRAIL. J Neurooncol 2009; 93: 303–318.

    Article  CAS  Google Scholar 

  71. Singh A, Rokes C, Gireud M, Fletcher S, Baumgartner J, Fuller G et al. Retinoic acid induces REST degradation and neuronal differentiation by modulating the expression of SCF(beta-TRCP) in neuroblastoma cells. Cancer 2011; 117: 5189–5202.

    Article  CAS  Google Scholar 

  72. Das CM, Zage PE, Taylor P, Aguilera D, Wolff JE, Lee D et al. Chromatin remodelling at the topoisomerase II-beta promoter is associated with enhanced sensitivity to etoposide in human neuroblastoma cell lines. Eur J Cancer 2010; 46: 2771–2780.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the American Cancer Center (RSG-09-273-01-DDC) and the National Institutes of Neurological Disorders and Stroke (1R03NS077021) to VG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Gopalakrishnan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, C., Taylor, P., Gireud, M. et al. The deubiquitylase USP37 links REST to the control of p27 stability and cell proliferation. Oncogene 32, 1691–1701 (2013). https://doi.org/10.1038/onc.2012.182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.182

Keywords

This article is cited by

Search

Quick links