Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IGFBP-3 methylation-derived deficiency mediates the resistance to cisplatin through the activation of the IGFIR/Akt pathway in non-small cell lung cancer

Abstract

Although many cancers initially respond to cisplatin (CDDP)-based chemotherapy, resistance frequently develops. Insulin-like growth factor-binding protein-3 (IGFBP-3) silencing by promoter methylation is involved in the CDDP-acquired resistance process in non-small cell lung cancer (NSCLC) patients. Our purpose is to design a translational-based profile to predict resistance in NSCLC by studying the role of IGFBP-3 in the phosphatidyl inositol 3-kinase (PI3K) signaling pathway. We have first examined the relationship between IGFBP-3 expression regulated by promoter methylation and activation of the epidermal growth factor receptor (EGFR), insulin-like growth factor-I receptor (IGFIR) and PI3K/AKT pathways in 10 human cancer cell lines and 25 NSCLC patients with known IGFBP-3 methylation status and response to CDDP. Then, to provide a helpful tool that enables clinicians to identify patients with a potential response to CDDP, we have calculated the association between our diagnostic test and the true outcome of analyzed samples in terms of cisplatin IC50; the inhibitory concentration that kills 50% of the cell population. Our results suggest that loss of IGFBP-3 expression by promoter methylation in tumor cells treated with CDDP may activate the PI3K/AKT pathway through the specific derepression of IGFIR signaling, inducing resistance to CDDP. This study also provides a predictive test for clinical practice with an accuracy and precision of 0.84 and 0.9, respectively, (P=0.0062). We present a biomarker test that could provide clinicians with a robust tool with which to decide on the use of CDDP, improving patient clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ATCC:

American Type Culture Collection

BS:

bisulfite sequencing

CDDP:

cisplatin

DFS:

disease-free survival

ECACC:

European Collection of Cell Cultures

EGFR:

epidermal growth factor receptor

IGFBP-3 :

insulin-like growth factor-binding protein-3

IGFIR:

insulin-like growth factor-I receptor

MSP:

methylation-specific PCR

NSCLC:

non-small cell lung cancer.

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  PubMed  Google Scholar 

  2. Koul S, McKiernan JM, Narayan G, Houldsworth J, Bacik J, Dobrzynski DL et al. Role of promoter hypermethylation in cisplatin treatment response of male germ cell tumors. Mol Cancer 2004; 3: 16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chang X, Monitto CL, Demokan S, Kim MS, Chang SS, Zhong X et al. Identification of hypermethylated genes associated with cisplatin resistance in human cancers. Cancer Res 2010; 70: 2870–2879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002; 346: 92–98.

    Article  CAS  PubMed  Google Scholar 

  5. Guix M, Faber AC, Wang SE, Olivares MG, Song Y, Qu S et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest 2008; 118: 2609–2619.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaw RJ, Cantley LC . Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006; 441: 424–430.

    Article  CAS  PubMed  Google Scholar 

  7. Cantley LC . The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–1657.

    Article  CAS  PubMed  Google Scholar 

  8. Eng C . PTEN: one gene, many syndromes. Hum Mutat. 2003; 22: 183–198.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou XP, Gimm O, Hampel H, Niemann T, Walker MJ, Eng C . Epigenetic PTEN silencing in malignant melanomas without PTEN mutation. Am J Pathol 2000; 157: 1123–1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang YS, Kong G, Sun S, Liu D, El-Naggar AK, Khuri FR et al. Clinical significance of insulin-like growth factor-binding protein-3 expression in stage I non-small cell lung cancer. Clin Cancer Res 2002; 8: 3796–3802.

    CAS  PubMed  Google Scholar 

  11. Ibanez de Caceres I, Dulaimi E, Hoffman AM, Al-Saleem T, Uzzo RG, Cairns P . Identification of novel target genes by an epigenetic reactivation screen of renal cancer. Cancer Res 2006; 66: 5021–5028.

    Article  CAS  PubMed  Google Scholar 

  12. Wiley A, Katsaros D, Fracchioli S, Yu H . Methylation of the insulin-like growth factor binding protein-3 gene and prognosis of epithelial ovarian cancer. Int J Gynecol Cancer 2006; 16: 210–218.

    Article  CAS  PubMed  Google Scholar 

  13. Chakravarti A, Loeffler JS, Dyson NJ . Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 2002; 62: 200–207.

    CAS  PubMed  Google Scholar 

  14. Morgillo F, Kim WY, Kim ES, Ciardiello F, Hong WK, Lee HY . Implication of the insulin-like growth factor-IR pathway in the resistance of non-small cell lung cancer cells to treatment with gefitinib. Clin Cancer Res 2007; 13: 2795–2803.

    Article  CAS  PubMed  Google Scholar 

  15. Morgillo F, Woo JK, Kim ES, Hong WK, Lee HY . Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer Res 2006; 66: 10100–10111.

    Article  CAS  PubMed  Google Scholar 

  16. Ibanez de Caceres I, Cortes-Sempere M, Moratilla C, Machado-Pinilla R, Rodriguez-Fanjul V, Manguan-Garcia C et al. IGFBP-3 hypermethylation-derived deficiency mediates cisplatin resistance in non-small-cell lung cancer. Oncogene 2010; 29: 1681–1690.

    Article  CAS  PubMed  Google Scholar 

  17. Aleksic T, Chitnis MM, Perestenko OV, Gao S, Thomas PH, Turner GD et al. Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res 2010; 70: 6412–6419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nyce JW . Drug-induced DNA hypermethylation: a potential mediator of acquired drug resistance during cancer chemotherapy. Mutat Res 1997; 386: 153–161.

    Article  CAS  PubMed  Google Scholar 

  19. Zeller C, Dai W, Steele NL, Siddiq A, Walley AJ, Wilhelm-Benartzi CS et al. Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene 2012.

  20. Nyce J, Drug-induced DNA . hypermethylation and drug resistance in human tumors. Cancer Res 1989; 49: 5829–5836.

    CAS  PubMed  Google Scholar 

  21. Ferroni P, Della-Morte D, Palmirotta R, McClendon M, Testa G, Abete P et al. Platinum-based compounds and risk for cardiovascular toxicity in the elderly: role of the antioxidants in chemoprevention. Rejuvenation Res 2011; 14: 293–308.

    Article  CAS  PubMed  Google Scholar 

  22. Attia SM . Influence of resveratrol on oxidative damage in genomic DNA and apoptosis induced by cisplatin. Mutat Res 2012; 741: 22–31.

    Article  CAS  PubMed  Google Scholar 

  23. Khan R, Khan AQ, Qamar W, Lateef A, Tahir M, Rehman MU et al. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: probable role of p38MAPK and p53. Toxicol Appl Pharmacol 2012; 258: 315–329.

    Article  CAS  PubMed  Google Scholar 

  24. Campos AC, Molognoni F, Melo FH, Galdieri LC, Carneiro CR, D’Almeida V et al. Oxidative stress modulates DNA methylation during melanocyte anchorage blockade associated with malignant transformation. Neoplasia 2007; 9: 1111–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 2007; 104: 15805–15810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bai T, Tanaka T, Yukawa K, Umesaki N . A novel mechanism for acquired cisplatin-resistance: suppressed translation of death-associated protein kinase mRNA is insensitive to 5-aza-2’-deoxycitidine and trichostatin in cisplatin-resistant cervical squamous cancer cells. Int J Oncol 2006; 28: 497–508.

    CAS  PubMed  Google Scholar 

  27. Qiu YY, Mirkin BL, Dwivedi RS . Inhibition of DNA methyltransferase reverses cisplatin induced drug resistance in murine neuroblastoma cells. Cancer Detect Prev 2005; 29: 456–463.

    Article  CAS  PubMed  Google Scholar 

  28. Lawless MW, O’Byrne KJ, Gray SG . Targeting oxidative stress in cancer. Expert Opin Ther Targets 2010; 14: 1225–1245.

    Article  CAS  PubMed  Google Scholar 

  29. Malinen M, Ryynanen J, Heinaniemi M, Vaisanen S, Carlberg C . Cyclical regulation of the insulin-like growth factor binding protein 3 gene in response to 1alpha,25-dihydroxyvitamin D3. Nucleic Acids Res 2011; 39: 502–512.

    Article  CAS  PubMed  Google Scholar 

  30. Lawless MW, Norris S, O’Byrne KJ, Gray SG . Targeting histone deacetylases for the treatment of disease. J Cell Mol Med 2009; 13: 826–852.

    Article  CAS  PubMed  Google Scholar 

  31. Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M . Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res 2006; 66: 9009–9016.

    Article  CAS  PubMed  Google Scholar 

  32. Niu X, Zhang T, Liao L, Zhou L, Lindner DJ, Zhou M et al. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene 2012; 31: 776–786.

    Article  CAS  PubMed  Google Scholar 

  33. James SR, Link PA, Karpf AR . Epigenetic regulation of X-linked cancer/germline antigen genes by DNMT1 and DNMT3b. Oncogene 2006; 25: 6975–6985.

    Article  CAS  PubMed  Google Scholar 

  34. Issa JP . CpG island methylator phenotype in cancer. Nat Rev Cancer 2004; 4: 988–993.

    Article  CAS  PubMed  Google Scholar 

  35. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446: 153–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Forgacs E, Biesterveld EJ, Sekido Y, Fong K, Muneer S, Wistuba II et al. Mutation analysis of the PTEN/MMAC1 gene in lung cancer. Oncogene 1998; 17: 1557–1565.

    Article  CAS  PubMed  Google Scholar 

  37. Yokomizo A, Tindall DJ, Drabkin H, Gemmill R, Franklin W, Yang P et al. PTEN/MMAC1 mutations identified in small cell, but not in non-small cell lung cancers. Oncogene 1998; 17: 475–479.

    Article  CAS  PubMed  Google Scholar 

  38. Chattopadhyay S, Machado-Pinilla R, Manguan-Garcia C, Belda-Iniesta C, Moratilla C, Cejas P et al. MKP1/CL100 controls tumor growth and sensitivity to cisplatin in non-small-cell lung cancer. Oncogene 2006; 25: 3335–3345.

    Article  CAS  PubMed  Google Scholar 

  39. Hamano R, Miyata H, Yamasaki M, Kurokawa Y, Hara J, Moon JH et al. Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the akt signaling pathway. Clin Cancer Res 2011; 17: 3029–3038.

    Article  CAS  PubMed  Google Scholar 

  40. Oliveras-Ferraros C, Vazquez-Martin A, Lopez-Bonet E, Martin-Castillo B, Del Barco S, Brunet J et al. Growth and molecular interactions of the anti-EGFR antibody cetuximab and the DNA cross-linking agent cisplatin in gefitinib-resistant MDA-MB-468 cells: new prospects in the treatment of triple-negative/basal-like breast cancer. Int J Oncol 2008; 33: 1165–1176.

    CAS  PubMed  Google Scholar 

  41. Romanelli RJ, LeBeau AP, Fulmer CG, Lazzarino DA, Hochberg A, Wood TL . Insulin-like growth factor type-I receptor internalization and recycling mediate the sustained phosphorylation of Akt. J Biol Chem 2007; 282: 22513–22524.

    Article  CAS  PubMed  Google Scholar 

  42. Vecchione A, Marchese A, Henry P, Rotin D, Morrione A . The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol Cell Biol 2003; 23: 3363–3372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takeda K, Hida T, Sato T, Ando M, Seto T, Satouchi M et al. Randomized phase III trial of platinum-doublet chemotherapy followed by gefitinib compared with continued platinum-doublet chemotherapy in Japanese patients with advanced non-small-cell lung cancer: results of a west Japan thoracic oncology group trial (WJTOG0203). J Clin Oncol 2010; 28: 753–760.

    Article  CAS  PubMed  Google Scholar 

  44. Tsai CM, Chen JT, Stewart DJ, Chiu CH, Lai CL, Hsiao SY et al. Antagonism between gefitinib and cisplatin in non-small cell lung cancer cells: why randomized trials failed? J Thorac Oncol 2011; 6: 559–568.

    Article  PubMed  Google Scholar 

  45. Sonnweber B, Dlaska M, Skvortsov S, Dirnhofer S, Schmid T, Hilbe W . High predictive value of epidermal growth factor receptor phosphorylation but not of EGFRvIII mutation in resected stage I non-small cell lung cancer (NSCLC). J Clin Pathol 2006; 59: 255–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Judde JG, Rebucci M, Vogt N, de Cremoux P, Livartowski A, Chapelier A et al. Gefitinib and chemotherapy combination studies in five novel human non small cell lung cancer xenografts. Evidence linking EGFR signaling to gefitinib antitumor response. Int J Cancer 2007; 120: 1579–1590.

    Article  CAS  PubMed  Google Scholar 

  47. Sanchez-Perez I, Murguia JR, Perona R . Cisplatin induces a persistent activation of JNK that is related to cell death. Oncogene 1998; 16: 533–540.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J Siegfried for the English correction, F Dominguez for her technical help, the Health Investigation Funding to IIC through the ‘Miguel Servet’ program (CP08/000689; PI-717) and acknowledge the support of PI08/1485 and PS09/00472 and PI11/00949 projects. We thank MINECO for its support through SAF2010-19230 Grant. This work was supported by FIS PI08-1485, FIS 11-00949, PS09/00472 and Miguel Servet financial support to Ibanez de Caceres, I (CP 08/000689; PI-717).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Perona or I Ibanez de Caceres.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés-Sempere, M., de Miguel, M., Pernía, O. et al. IGFBP-3 methylation-derived deficiency mediates the resistance to cisplatin through the activation of the IGFIR/Akt pathway in non-small cell lung cancer. Oncogene 32, 1274–1283 (2013). https://doi.org/10.1038/onc.2012.146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.146

Keywords

This article is cited by

Search

Quick links